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FOREWORD 

This report describes research effort of the Systems 

Research Laboratory to develop analytical models of defense 

processes, principally the combat process.  Part of the re- 

search was sponsored by the Office of Naval Research (ONR) 

under Contract No. N0014-67-A-0181-0012 and other parts by the 

Directorate, Weapon Systems Analysis, (DWSA) Office of the 

Assistant Vice Chief of Staff, U.S. Army, under Contract No. 

DAHC15-68-C-0314,  Because of the intimate relationship be- 

tween the research supported by these organizations, the results 

are combined in one document but issued under separate covers 

appropriate to the sponsoring agency.  The report for the 

Directorate, Weapon Systems Analysis is entitled "Develop- 

ment of Analytical Models of Battalion Task Force Activities," 

Report Number SRL 1957 FR 70-1. 

The report is comprised of a number of parts.  Part A 

presents an overview of the differential models of combat de- 

veloped in the research program and a summary of results for the 

reader who is interested in learning of the modeling approach with- 

out involvement in mathematical details.  Parts B through F con- 

tain the mathematical developments.  Part B presents the concepts, 

development details, and resultant models for the "attrition 

rate"--the principal element of the differential combat models. 

Parts C and D describe solution procedures and analysis results 

for homogeneous-force and heterogeneous-.force battle models, 

respectively.  The results of a small effort to analytically 
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model reconnaissance activities are described in Part E.  Part 

F presents research results for miscellaneous areas which are 

tangentially related to the main thread of research or, due to 

limited effort, only state the research approach. 

The research program described in this report concerned 

only the development of generalized mathematical differential 

models of combat, rather than detailed models of specific 

combat situations.  These general models have been applied 

to specific combat situations which had also been modeled by 

Monte-Carlo simulation methods.  Comparisons between the differ- 

ential models and a Monte-Carlo one showed that their predic- 

tions of combat results were essentially the same.  This com- 

parison activity was performed by Vector Research, Incorporated 

under contract DAHC15-7 0-C-0151 with the Directorate, Weapon 

Systems Analysis, after completion of the research reported 

herein.  A short summary of the comparison results has been 

included in this report as an appendix to Part A to demonstrate 

that the differential models of combat, although abstract in 

form, can be usefully employed in defense planning activities. 

Except for the Summary, Part A, each part of the report is 

comprised of chapters which are self-contained in so far as 

equation numbers, figures, etc.  An attempt has been made to 

utilize consistent notation throughout the chapters using the 

definitions given in the list of symbols.  Exceptions to this 

are either noted or self-evident in context of the particular 
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development.  Frequent references are made to developments and 

equations among the various chapters and parts of the report 

to reduce redundancy of exposition.  These references are made 

by the notation [capital letter, arabic numeral], where the 

capital letter identifies the part and the arabic numeral 

the chapter and section within the part. 

The contents of this report represent the current views 

of the Systems Research Laboratory, Department of Industrial 

Engineering, The University of Michigan, and should not be 

considered as having official ONR, Department of the Navy, 

or DWSA, Department of the Army approval either expressed or 

implied until reviewed and evaluated by those agencies and 

subsequently endorsed. 

We would like to acknowledge the contributions of Miss 

Mary Schnell, Mrs. Barbara MacAdam, Mrs. Pat Zangara, and 

Mrs. Bonnie Wood, who patiently typed and proofread the text 

of the report. 



Vll 

CONTENTS 

Page 

Symbols ,  xi 

Part A - Overview and Summary of the Research 
Program   1 

Chapter 1 Introduction   3 

Chapter 2 An Analytic Structure of Combat   11 

Chapter 3 Attrition Coefficient Prediction 
Methods 18 

3.1 The Attrition Rate  18 

3.2 The Allocation Factor  26 

3.3 The Intelligence Factor  28 

Chapter 4 Combat Model Solution Procedures 
and Results  30 

4.1 Homogeneous-Force Results   31 

U.2    Fire-Support Engagement Re- 
sults *  47 

4.3 Heterogeneous-Force Results   49 

Chapter 5 Related Research Results and Future 
Needs    52 

5.1 Preliminary Modeling of Surveil- 
lance Patrols  52 

5.2 Stochastic Duels with Reliability 
and Mobility  56 

5.3 Future Research  58 

Appendix A Test of • ,** General Model  65 

Prodfog page blank 



Vlll 

' 

CONTENTS 
(continued) 

Part B - Attrition-Rate Prediction Methods   77 

Chapter 1 Introduction   81 

Chapter 2 Impact-Lethality Systems 
Repeated Single-Shot, Burst, and 
Mixed-Mode Fire Doctrine   92 

Chapter 3 Impact-Lethality Systems, Repeated 
Single-Shot Fire Doctrine*  Transform 
Approach 121 

• 
Chapter 4 Semi-Markov Analysis  136 

Chapter 5 Area-Lethality Systems  141 

Part C - Homogeneous-Force Differential Models  163 

Chapter 1 Constant Attrition-Rate Model  167 

Chapter 2 Variable Attrition Rates, Constant « 
Ratio Model  175 

Chapter 3 The Effect of Maneuver: 
Constant-Ratio Attrition-Rate Func- 
tions  192 

Chapter 4 Variable Attrition Rates, Analytic 
Results  247 

Chapter 6 Dynamics of a Fire Support Attack 
Doctrine  368 

Part D - Heterogeneous-Force Differential Models  38 5 

Chapter 1 Constant Attrition-Coefficient 
Model  389 

i 
i 

Chapter 5 Variable Attrition Rates, Analog ^ 
Computer Results  296 I 

. 

il 



IX 

CONTENTS 
(continued) 

Chapter 2 Allocation Strategies  437 

Chapter 3  Numerical Solution Procedure, 
Variable-Coefficient Model  479 

Part E - Intelligence and Reconnaissance Models  5 21 

Chapter 1 The Intelligence Coefficient  525 

Chapter 2  Preliminary Modeling of Surveil- 
lance Patrols  5 30 

Chapter 3 A Multiple Interval Visibility 
Model  551 

Part F - Miscellaneous Research Areas  „ 569 

Chapter 1 Reliability and Mobility in the 
Theory of Stochastic Duels  573 

Chapter 2 Some Thoughts on Analysis of 
Differential Models of Combat  S13 

Chapter 3 Ammunition Requirements Based 
on Differential Models of CcTtbat  622 



XI 

SYMBOLS 

This listing contains principal notation used in the report 

Some symbols are used more than once; however, the-'r meaning 

should be clear in context of a specific chapter or part of the 

report.  Subscript notation has been omitted. 

English Symbols 

A 

A 

A 

A 

a. 
l 

m  n 

di 

Blue attrition coefficient 

Blue attrition-rate matrix 

Total area searched 

Total area searched by surveillance patrol 

Area of i  subarea searched 

Red attrition coefficient 

Red attrition-rate matrix 

Firing rate common to all units of the Blue [Red] 
force 

A combined attrition-rate matrix 

Terminal surface in E 

A constant ratio of the Red to B^e attrition- 
rate functions 

The difference m - n 

Distance between subareas (i - 1) and i 

The difference m - n at r = 0 

Expected value operator 

Blue allocation matrix PTSCSdiflg PSg6 MfllllE 

Optimal allocation strategy matrix for Elue force 
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EM(t) [EN(t)] Total ammunition expenditure of a Blue [Red] 
unit up to time t in an engagement 

E Euclidean (I + J) space 

e Blue allocation factor 

Fj Average fraction of time that the J-type weapons 
are not advancing 

<\ 
F Corrected approximate expected fraction of damage 

to an area target in v volleys 

f.(t) [fR(t)l Probability density function of the time between A     D    A's [B's"1 rounds 

7 Expected fraction of damage to an area target in v 
v volleys 

f Approximate expected fraction of damage to an 
v area target in v volleys 

g(t)        Probability density function for T, 

H Red allocation matrix 

H* 

H Probability that a hit after a hit destroys the 
H target 

H Probability that a hit after a miss destroys the 4M target 

H Probability that a hit on the first round destroys 
1 the target 

h Red allocation factor 

I Blue intelligence factor 

I Maximum number of Blue force groups 

j Maximum number of Red force groups 

j Jordan normal form of a matrix 

K Red intelligence factor 

., 

Optimal allocation strategy matrix for Red 
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K Conditional probability of destroying the target, 
given it is hit by a projectile 

Slope of Blue [Red] linear attrition-rate functions 

Lifetime of A's [Bfs] firepower subsystem 

Time A [B] detects his failure 

Number of target postures 

Probability density function for T£ 

Initial number of Blue forces 

Probability that a miss after a hit destroys the 
target 

Probability that a miss after a miss destroys the 
target 

Number of surviving Blue anits at the split range 
in the fire-support engagement 

Probability that a miss on the first round de- 
stroys the target 

Number of units in the Blue fire-support force 

Renewal function 

Number of Blue I-group losses in time increment AT 

Number of Blue forces as a function of time or 
range 

Number of units in the Blue moving forces in the 
fire-support engagement 

Initial number of Red forces 

Number of rounds fired to destroy a target 

Number of Red J-group losses in time increment AT 

Number of Red forces as a function of time or range 

Number of subareas searched by surveillance patrol 

Number of rounds fired to get the first hit 

Number of rounds to get (z - 1) additional hits 

Ka  [V 
LA  CLB] 

L* W 
I 

i(T) 

M 

MH 

«M 

Ms 

Ml 

M2 

M(t) 

AMj 

m 

ml 

N 

N 

ANj 

n 

n 

ni 

n2 
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Pyr Conditional probability of destroying the target 
given it is hit by a projectile 

P. Q       Probability of acquiring a live target and termina- 
,y       ting attention to that target before it is de- 

stroyed 

P(x)       Payoff when the battle terminates at x on C 

p Rehitting probability 

p Conditional probability of a hit given the preceding 
round fired missed the target 

p Expected number of rounds required to destroy a 
target (E[N]) 

Percent force split in the fire support engagement 

A's [B:s] single-shot kill probability 

Probability of firing on a dead target 

Probability of detecting a target in i  subarea 

Probability of firing on a live target 

Probability that the target and observer are inter- 
visible 

Probability of firing in a void area 

Probability a round fired at time t destroys the 
target 

First round hit probability 

Total ammunition requirements for the Blue [Red] 
force 

Adequate ammunition requirements for the Blue [Rea. 
force 

Initial ammunition supplies for each Blue [Red] 
unit 

Sufficient ammunition supplies for each Blue [Red] 
unit 

p 

PA [pB] 

PD 

Pi 

PL 

Pv 

Pv 
p(t) 

pl 
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«* K1 
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rA(t) [r
B
(t)] 

S, 

Sn C8m3 n  m 

T 

T 

TA [TB] 

D 

L,K 

T L,Q 

Range at which a Blue [Red] weapon system first 
achieves a nonzero attrition rate 

Range at which a weapon system (Blue and Red) 
first obtains a nonzero attrition rate (i.e., 
R = R = R0) e   a   ß 

Radius of damage pattern 

Range at which the Blue force splits in the fire- 
support engagement 

Radius of target area 

Range at which the battle begins 

Range between forces (force separation) 

Probability density function of A's [B's] lifetime 

Probability of covering the target in one volley 

Distance of the Red [Blue] forces from some common 
reference 

Time for a single Blue [Red] system to destroy a 
passive Red [Blue] target 

Total time that the target is in the visible state 

Duration of the engagement 

Time for A [B] to destroy a passive target, 
given he is free from failures 

The expected time to fire on a dead target before 
beginning search for another tarpet 

The expected or average time to fire on a live targe 
before beginning search for another target [same as 
E(T)] 

Mean time between the commencement of searches when 
a  live target is acquired and destroyed by the ac- 
quiring unit 

Mean time between the commencement of searches when 
live target is acquired ^ut not killed by the ac- 
quiring unit 



XV1 

UA CuB] 

V 

v 

n  m 

x 

y 

z 

The expected time to fire on a void area before 
beginning search for a target 

Time variable 

Time since the beginning of battle 

Value of the payoff when optimal strategies are 
employed 

Conditional probability of a hit given the 
preceding round fired hit the target 

Probability A*s [B*s] round fails 

Speed of the main force 

Relative speed between the Blue and Red forces 
Vm - v^ m   n 

Conditional probability of a hit following a miss 
but preceding the first hit 

Speed of the surveillance patrol which advances 
to search area A 

Speed of movement between subareas in surveillance 
activity 

Speed of Red [Blue] force 

Damage pattern center of impact in the x direction 

Damage pattern center of impact in the y direction 

Number of hits required to destroy the target 
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Greek Symbols 

a 

°k 
ao 

a(r) 

a(0) 

Blue attrition rate 

Probability A fails on round k + 1 

Value of the Blue attrition rate at r = 0 

Blue attrition-rate function 

Value of the Blue attrition rate at t » 0 
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3<r) 

3(0) 

YÄt 

A 

nx(t) 

n2(t) 

p 

p~ 

m 

Red attrition rate 

Probability B fails on round j + 1 

Value of the Red attrition rate at r = 0 

Red attrition-rate function 

Value of the Red attrition rate at t = 0 

Probability one round is fired in (t, t + At) 

Probability of destroying the target given a coverage 

Probability that a target is visible at t 

Probability that a target is not visible at t 

The ratio m/n 

The ratio m/n at r = 0 

Time to acquire targets 

Average time between rounds during the burst firing 
mode 

Time required to detect a target when it is con- 
tinuously visible to the sensor 

Time to detect a target, given it is detected 

Projectile flight time 

Time to fire a round given the preceding round was 
a hit 

Time to fire the first round in the burst process 
after obtaining the first hit in the single-shot 
process 

Time to fire a round given the preceding round 
was a miss 

Time spent in the subarea if a target is not 
detected 

Time that the target remains visible 

Time to fire the first round 
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• <t> 

•c(t) 

Ü) 

Approximate expected fraction of damage to an area 
target in v volleys at time t 

Corrected approximate expected fraction of damage 
to an area target in v volleys at time t 

relative acceleration between the Blue and Red 
forces 
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Chapter 1 

INTRODUCTION 

Seth Bonder 

The importance of employing quantitative approaches to 

military planning activities is well recognized.  Central 

to many of these activities, and of particular importance 

to weapon system planning studies (selection, tactical doctrine, 

etc.}, is the requirement for methods to predict the effective- 

ness of combat units equipped with different mixes of weapon 

systems. It is further incumbent that the effectiveness esti- 

mating methods be related to decision variables under control 

of the military planner in a way such that the effect of their 

2 
variation may be readily observed. 

The development of methods to measure or predict effective- 

ness of combat units, and identification of the variables which 

significantly eontfrir^te to combat effectiveness, has been limited 

for a number of reasons. By definition, measures of a combat 

unit's effectiveness should reflect the degree to which the unit 

accomplishes its mission.  Additionally, it is well known that 

mission accomplishment is highly dependent upon the complex 

1See Bonder (1970), Hitch and McKean (1960), and Enke (1967). 
2 
These variables are often times referred to as conceptual 
combat functions, e.g., firepower, maneuver, intelligence, etc. 



interaction of weapon system characteristics, threat variables, 

organization structures, tactics employed, and environmental 

conditions.  One approach used has been to develop simple "in- 

dications" of combat effectiveness such as the "firepower 

score," "indices of combat effectiveness," and "single-shot 

kill probabilities." These indicators (a) do not measure ac- 

complishment of uiit missions, (b) essentially ignore most of 

the above factors which effect mission accomplishment, and 

(c) bear little relation to the physical combat process. 

A second, and most heavily used, approach to predict effec- 

tiveness of combat units is that of Monte Carlo simulation. 

This approach is essentially one of modeling the combat situa- 

tion in minute detail, explicitly including weapons system cap- 

abilities, threat, environment, and other factors which effect 

mission accomplishment. An example of the detail included is 

shown in Figure 1, which depicts a one-on-one duel, the basic 

combat activity in large-scale Monte Carlo simulations of 

ground combat. Random numbers are drawn to determine the time 

for each weapon to fire its first round.  Focusing on the Blue 

weapon system, additional random numbers are drawn to determine 

the flight time of the first round to the target,  if the first 

round hit the target, and if the round destroyed the target. 

This process is simultaneously accomplished for the Red weapon 

system.  If Blue has not destroyed Red with his first round, and 

«• 

• - 

1 This is usually treated as a range-dependent constant and 
need net be sampled by Monte Carlo methods. 
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if he is alive himself, this process is repeated for Blue's 

second round, Red's second round, Blue', third round, and so 

on.  The process is continued until one of the duelists is 

killed or the duel is terminated based on engagement rules 

built into the simulation. 

These activities, and others, of every system are recorded 

during the course of the battle and eventually analyzed.  Solu- 

tion of such models is essentially an experiment in which the 

process is sampled and replicated a large number of times.  The 

literature reflects the existence of a large number of Monte 

Carlo simulations used to analyze defense planning problems 

(Adams, 1961; Roberts, 1963; Quade, 1964; USACDC, 1969; Bishop 

and Clark, 1969). 

Although Monte Carlo simulations are heavily employed in 

military planning circles, some meaningful drawbacks exist 

in their use as effectiveness assessment tools.  Immediately 

evident is the loss in generality, since a new simulation must 

be developed for each class of weapon system or level of organi- 

zation examined.  Associated with a simulation is the large 

expenditure of time and financial resources for the development 

and utilization of the model.  It would not be unreasonable to 

expect to spend 10 to 15 man-years In just developing a simula- 

tion of combat such as Carmonette (Adams, 1961) or Dyntacs 

(Bishop and Clark, 1969).  Additionally, 'It would not i>e  unrea- 

sonable to expect each replication of the simulation to require 

** 
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10 to 20 minutes of computer time, and anywhere from 10 

to 60 replications for statistical stability of the results. 

The large number of variables usually included in simulations 

makes it extremely difficult to run parametric studies with the 

model to perform sensitivity analysis over the simulation assump- 

tions and input data.  This is due to both the statistical 

experimental design problems and money constraints which prohibit 

the large number of replications needed to determine the distri- 

bution of outcomes.  Finally, and perhaps most importantly, the 

large amount of detail contained in the simulation makes it 

difficult to use as a tool for analysis, i.e., single out those 

independent variables which significantly contribute to the 

combat effectiveness. 

In contrast to the Monte Carlo simulation approach, a 

limited amount of effort has been devoted to developing and 

using analytic (mathematical) models to predict the effective- 

ness of combat units.  In*this approach the physical combat 

or other military situation is studied and decomposed into 

its basic elements, mathematical descriptions of these elements 

are developed, and these element descriptions are integrated 

in an assumed overall mathematical structure of the process 

dynamics.  Solutions are obtained by consistent mathematical 

operations giving rise to relationships between independent 

Test runs with the Carmonette simulation required 2 minutes 
of computer time to simulate 1 minute of battle in a single 
replication (Adams, 1961, p. 35). 



variables and the dependent ones of combat effectiveness. 

This approach has a number of obvious advantages both in its 

own right and as a powerful supplement to Monte Carlo simula- 

tions.  Time and financial resources for development and utili- 

zation are usually markedly reduced.  In analytic formulations, 

the relationship between independent factors of the process 

and the process output is usually explicitly presented, facili- 

tating both sensitivity analysis and determination of those 

independent variables which significantly contribute to combat 

effectiveness.  Finally, analytic structures are usually more 

general, thus facilitating more generalized use of the models 

across different combat organization levels and weapon systems. 

i 

0 

Although analytic formulations appear to have a number of 

obvious advantages as military planning tools, c-hly a limited 

number of them have been developed or employed as planning 

procedures.  The most prominent of these are the Lanchester 

theories and the theory of stochastic duels, both of which are 

well documented in the literature (Dolansky, 1964; Ancker, 1967). 

The structure of initial Lanchester theories is given in 

[C, 1.03 and a summary of the stochastic duel literature is 

contained in [F, 1.1]. A brief summary of problems associated 

with their use as planning tools is given below. 

The Lanchester theories of combat provide the means 

of describing combat between organizations comprised of numbers 

of heterogeneous weapons systems; however, general solutions 

I 
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for the heterogeneous-force case do not exist.  Excluding the 

apparent contradiction of results from verification studies 

(Engel, 195H; Willard, 1962), a number of other important 

deficiencies currently exist which preclude their use as plan- 

ning tools.  No means are available for predicting the attri- 

tion coefficients—a principal effectiveness input to the 

theory—as a function of the capabilities of the weapon systems. 

The mobility of weapon systems (an important aspect of their 

tactical use) is not explicitly considered, nor is the fact 

that the attrition coefficients vary when either or both 

combatants use mobile weapon systems, i.e., variations in 

force separation affect a weapon system's acquisition, fire- 

power, and protection capabilities. 

The relatively new theory of stochastic duels attempts 

to overcome a major deficiency of the Lanchester formulations - 

that of aggregating the weapon system parameters.  Stochastic 

duel descriptions include basic weapon capabilities such as 

their firing times, hit probabilities, and kill probabilities. 

To date, this approach has been only partially successful. 

Although there has been an attempt to consider fundamental 

characteristics of weapons systems, the duels ignore some 

important parameters and place rather restrictive'assumption.' 

on the parameters. Application of the stochastic duel appro,. 

to multiple duels and, more importantly, large-seale battle: 

requires increasingly more restrictive assumptions regarding 

the parameters and employment doctrine. As with the Lanc-he:,: 
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approach, the stochastic duel descriptions virtually omit tho 

effect of mobility on the outcome of engagements and the fact 

that the weapon parameters are time dependent when either 

or both combatants employ tactical mobility. 

In summary, methods are needed to predict the effective- 

ness of combat units equipped with mixes of weapon systems. 

There is a heavy reliance on Monte Carlo simulations of com- 

bat for this purpose; however, there exists a number of signi- 

ficant deficiencies in their development and sole utilization 

as planning tools. Although analytic approaches appear to have 

some obvious advantages in their own right and as supplements 

to Monte Carlo simulations, deficiencies in the existing 

Lanchester and stochastic duel theories are sufficient to limit 

their use as planning tools. 

The objective of the research program described herein 

is to develop analytic representations of combat and other 

military activities that can be used efficiently and effectively 

for planning purposes. The remainder of this part of the report 

presents an overview of the approach taken, a qualitative 

summary of the results obtained, and a brief description of 

additional research requirements. Parts B through F of the 

report contain the quantitative results, detailed mathematical 

developments, and solution procedures. 

:; 
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Chapter 2 

AN ANALYTIC STRUCTURE OF COMBAT 

Seth Bonder and Robert Farrell 

In a broad sense the primary objective of our research 

is the development of analytic structures that can be used to 

predict the resulte  of an artificial history of combat. 

Essentially, this would be a trajectory or trace of time, 

geometry, casualties, and resources expended for both forces. 

Measures of combat effectiveness such as the ratio of sur- 

viving forces at the objective, time to overrun the objective, 

and the amount of terrain controlled are then determined from 

these results of battle. 

Ideally, there exists some functional relationship be- 

tween the results of battle and the initial numbers of forces, 

types and capabilities of the weapons systems, the doctrine 

of employment, and the environment. Thus, we would like to 

specify the function f shown below. 

= f 

Numbers of Forces 
Types of Weapon Systems 
Weapon Capabilities 
Doctrine of Employment 

(tactics, organization) 
Environment 

••' 

It is important to recognize that what is being developed 
is a descriptive theory of combat activities and not a 
normative one which specifies an optimum force structure, 
although some optimization methods have been examined. 
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Unfortunately, it is not known how to hypothesize such a 

function directly, nor is there sufficient data to develop 

it empirically.  Because of this, we attempt to approximate 

what happens in a small period of time during the battle. 

That is, for each side, it is hypothesized that in a short 

period of time 

(a) locations change due tc tactical movement, 

(b) weapon systems are attrited by enemy activity, 

(c) resources are expended, and 

(d) personnel become casualties due to enemy activity. 

Focusing on the loss of weapon systems and personnel, 

it is assumed that, .f the state of the battle at the beginning 

of the small interval is known, and the activity that takes 

place during the interval is known, the rate  at which weapons 

systems and personnel are attrited during this small interval 
2 

can be predicted.  It is because of this rate focus that the 

mathematical structure employed to model the combat activity 

is that of differential equations. 

For convenience, names are assigned to the numbers of 

different groups of systems in each force.  Let 

: 

" 

w 

1 

I 
I 

Reserve commitment and resupply during the small interval of 
time are also possible but are omitted for presentation purposes. 

This essentially is the concept of measurable attrition rates 
formulated by F. W. Lanchester (1916). 

" 

i 
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m.  = the number of surviving Blue units of the i 

group (i = 1,2,...,I). 

n.  = the number of surviving Red units of the j 

group (j = 1,2,...,J). 

Different groups are determined by their ability to attrit 

weapons systems of an opposing group.  Therefore, missile 

weapon systems and rapid-fire machine guns form different 

groups since the rate at which they can attrit targets of 

an opposing group are different. Additionally, similar 

weapon system types can form different groups if they are 

at different ranges to the target and this range difference 

affects their ability to attrit it.  Thus, a tank platoon 

1,000 meters from the target is a different group than another 

tank platoon 3,000 meters from the target. 

The overall analytic structure of the combat activity is 

based on assumptions that 

(a) the rate of loss of units in the j  Red group due 

to the i  Blue group is proportional to the number 

of units in the i  Blue group with a proportionality 

factor called the attrition ooeffioientt   and 

(b) the rate of loss of units in the j   Red group in 

total is the sum of the rates of losses due to 

different i   Blue groups. 
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Mathematically, these assumptions take the form of the following 

l o 
coupled sets of differential equations: • 

<%£>  s -2^Ai.(r)m.     for j = 1.2 J     Cl] 

i-1 1J 

3F1 =  2 B.-Cr)^     for i = 1,2 1 ,   [2] 
j = l 

where 

A..<r) » the utilized per system effectiveness of 
** .th 

systems in the l  Blu* group against the 

j  R«d target at range r. This is called 

the Blue attrition coefficient. 

B..(p) s the utilized per system effectiveness of 
** .th 

systems in the j   Red group against the 

i  Blue target at ranne r.  This is called 

the Red attrition coefficient. 

Although the variable r is used to designate the range 
between the firing weapon group and the target group, 
it should be noted that, in application of the model, 
actual time trajectories and positions of each group 
can be considered* * 

2 
Although not explicitly shown, resources expended are 
explicitly contained in the development of the AJ. 
[see (B, 2.0^] and can be determined directly   ** 
from the model, .as noted £n [F, 3.0]. 

«» 

i 
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It is noted that this formulation is a deterministic one 

which treats the numbers of surviving forces (m. and n.) as 

continuous variables, while clearly the actual battle activity 

is a random phenomenon and m. and n. are integer-valued vari- 

ables.  Although many probabilistic arguments are contained in 

this formulation (as shown in Parr3 B through F of this re- 

port), the output of the model is a deterministic trajectory 

of the surviving numbers of forces.  The reasons for this 

deterministic formulation, instead of a stochastic one if the 

same process, are given in.[B, 1.0],  It is of interest to 

note that research done on comparing the deterministic and 

stochastic formulations for the homogeneous-force case (only 

one force group en each side) indicates that the deterministic 

formulations are reasonably good approximations of the ex- 

pected number of survivors if there is a small probability 

that either side is annihilated.  Additionally, in many de- 

fense studies that employ Monte Carlo simulations, typically 

only the expected results are oonsidered in the decision- 

making process. 

The attrition coefficients (A., and B..) are, as one 

would expect, complex functions of the weapon capabilities, 

target characteristics, distribution of the targets, alloca- 

tion procedures for assigning weapons to targets, etc.  The 

model attempts to reflect these complexities by partitioning 

the total attrition process into four distinct ones: 
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1.  The effectiveness of weapons syterns while firing 

on live targets, 

I 2. The allocation procedure of assigning weapons to 

targets, 

3. The inefficiency of fire when other than live 

targets are engaged, and 

4. The effect of terrain on limiting the firing 

activity and on mobility of the systems. 

The latter was not examined in the research program; however, 

a means of incorporating these effects was included in the 

comparison of the model predictions with that of a Monte 

Carlo simulation model, as described in Appendix A. 

The first three effects are included in the attrition 

coefficient as 

A. Ar)  = a..(r)e..(r)I..(r) [3] 

.. 

B..(r) = B.-CDh.^iOK^D , [»]       } 

i   » 

where 

a..(r) = the attrition rate—the rate at which an 
*J     ... .      th 

individual system in the l  Blue group 

destroys live j  group Red targets at 

range r when it is firing at them, 

. 
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i 

'. 

•tiM the  allocation factor--the  proportion of 

the i  Blue group systems assigned tc 

fire on the j  group Red targets which 

are at range r, 

I..(r) = the  intelligence  factor--the  proporti 
x3 +>, 

on 

of the i  group firing Blue weapons 

allocated to the j" Red group which are 

actually engaging live j  group Red 

targets at range r. 

i 

I 

Similar definitions exist for the components of the Red 

attrition coefficient, B... 

Major emphasis in the research prog, am has been on the 

development of methods for predicting these inputs and the 

development of solutions of the resultant coupled sets of 

differential equations.  The methods developed to date and 

results of the solution procedures are summarized in Chap- 

ters 3 and 4 of this part of the report.  Chapter 5 briefly 

describes results of related modeling of reconnaissance 

activities and an extension of the stochastic duel models 

of combat.  Areas for future research are also noted in 

Chapter 5. 

.. 
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Chapter 3 

ATTRITION COEFFICIENT PREDICTION METHODS 

Seth Bonder and Robert Farrell 

As shown in the previous chapter, the attrition coef- 

ficient is made up of the attrition rate, the allocation 

factor, and the intelligence factor.  Research has been de- 

voted to the development of methods to predict these inputs 

with major emphasis on prediction of the attrition rate. 

Detailed descriptions of attrition-rate prediction methods 

are given in Part B of the report.  Allocation factor re- 

search is described in [D, 2.0] and formulae for predicting 

the intelligence factor are developed in [E, 1.0]. 

3.1     The  Attrition  Rate 

Basic to the differential model or theory of combat 

is the attrition rate, which is the rate at which a weapon 

system can destroy live targets when it is firing at them. 

In the classical Lanchester theories, the attrition rate 

has been assumed constant or stave-dependent (dependent 

on the numbers or  surviving Red and Blue forces).  The 

ability to obtain, other than by hindsight, a satisfactory 

estimate of the attrition rate for future engagements has 

limited the use  of classical Lanchester theories for plannin 

The concept of the attrition rate formulated in this 

research program is described in [B, 1.0].  Simply, it is 

i 
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assumed to be dependent on a multitude of physical param- 

eters of a weapon system which describe its capabilities in 

such areas as acquisition, firing accuracy, delivery rate, 

and warhead lethality.  This dependency gives rise to two 

distinct variations in the attrition rate—variation with 

range to the target and chance variation at any specific 

range.  A mathematical structure of heterogeneous-force 

combat which includes the range and chance variations ex- 

plicitly cannot be analytically solved with existing mathe- 

matical techniques.  For this reason we have suppressed the 

explicit chance variation and used average attrition rates. 

This leads directly to the combat formulation given by equa- 

tions 1 and 2 (see page 1*0.  In this formulation we can con- 

sider the range variation of the attrition rate explicitly 

and somewhat independently of the chance variation at each 

specific range to the target. 

Based on some logical and mathematical arguments, it 

nas been shown that the appropriate average value definition 

of the attrition rate to use (for a specific range) with 

equations 1 and 2 is 

def'   « [5] a., (at range r) ==  =  
3 E[T..|r] 

For clarity of discussion, variations in the attrition rate 
due to changes in target posture, environmental effect, etc., 
which can be included in the model, are not presented. 



where 

E[T..|rJ = the expected time for a single Blue 
,th group to destroy a 

Red 

target is at range r. 

system of the i 
th 

passive j  group Red target, given the 

This definition for an average value of the attrition rate 

at range r is equivalent to the harmonic mean of the attri- 

tion rate when it is viewed as a random variable at range r. 

This definition also leads naturally to defining the range 

variation of the attrition rate as the variation in the 

reciprocal of E[T^.|rj as the range to the target changes. 

The range variation is called the attrition-rate function 

and is denoted by <*..(r), as used in the differential equa- 

tion structure of combat. 

Based on the above discussions, research on attrition 

rates has been concerned primarily with the development of 

time-to-kill  probability distributions and their expected 

values for a spectrum of weapon systems. The distribution 

for the time-to-kill random variable is developed by consid- 

eration of the number of rounds expended to achieve the kill. 

Thus, the amount of ammunition resources expended can be 

obtained directly for a specific combat activity. Essen- 

tially, what is done is to take the physical process of the 

duel (which is basic to Monte Carlo simulations) and model 

the dynamics of this process mathematically. 
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: 

: 

I 

To ensure that the attrition rates developed are general, 

a taxonomy of weapons systems that is not dependent on physical 

hardware characteristics (such as caliber) was developed. 

Rather, the taxonomy reflects characteristics of weapons sys- 

tems that would affect the methods used in predicting the at- 

trition rates. 

The taxonomy is shown in Figure 2.  Weapon systems are 

first classified by their lethality characteristics as having 

either impact-to-kill mechanisms or area-lethality effects. 

Within each of these categories, we have found it useful to fur- 

ther classify weapon systems on the basis of their methods of 

using firing information to control the system aim point and 

their delivery characteristics, i.e., the firing doctrine 

«mployed. 

Methods have been developed that allow the prediction of 

attrition rates for many of the weapon systems shown in the 

taxonomy.  The first cases analyzed involved single-tube firings 

in which launch of a projectile occurred only after the obser- 

vation of the effects of the preceding round.  These are called 

"repeated single-shot" doctrines in our schema, and are some- 

times called "shoot-look-shoot" doctrines.by other analysts. 

Analyses have been undertaken of two subclasses:  (a) those in 

which no use is made of information obtained from observations 

and (b) those in which the observations are treated distinctly 

depending on whether they are a hit or a miss, leading to 

different types of correction in aim point for these two cases. 
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LETHALITY MECHANISM: 

1, IMPACT 

2, AREA 

FIRE DOCTRINE: 

1. REPEATED SINGLE SHOT: 
#A) WITHOUT FEEDBACK CONTROL OF AIM POINT 

*B) WITH FEEDBACK ON IMMEDIATELY PRECEDING 

ROUND (MARKOV FIRE) 

C) WITH COMPLEX FEEDBACK 

2. BURST FIRE: 

*A) WITHOUT AIM CHANGE OR DRIFT IN OR BETWEEN BURSTS 
#B) WITH AIM DRIFT IN BURSTS, AIM REFIXED TO ORIGINAL 

AIM POINT FOR EACH BURST 

C) WITH AIM DRIFT, RE-AIM BETWEEN BURSTS 

3. MULTIPLE-TUBE FIRING: FEEDBACK SITUATIONS (1A, B, C) 
#A) SALVO OR VOLLEY 

4. MIXED-MODE FIRING: 

A) ADJUSTMENT FOLLOWED BY MULTIPLE-TUBE FIRE 

*B) ADJUSTMENT FOLLOWED BY BURST FIRE 

# INDICATES THAT ANALYSIS OF THIS CATEGORY HAS BEEN PERFORMED, 

Figure 2  Weapon System Classification for the Develop- 
ment of Attrition Rates 
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: 

This subclass is called "Markov fire." A completely general 

time-to-kill probability distribution for Markov fire systems 

has been developed. Weapon system parameters that are included 

explicitly in the distribution are shown in Figure 3.  Methods 

of predicting these parameters from basic hardware considera- 

tions are well known. 

The more complex doctrines involving "multiple-tube 

firings" and "burst fire," have been analyzed separately. 

These are classes of systems for which the projectiles may 

be launched before observation of previous round effects. 

Burst-fire cases analyzed include those in which rounds are 

all identical with respect to accuracy (no drifting or con- 

trolled alteration of the aim point) and thost. in which the 

rounds within a burst vary, but the bursts are resighted to 

the same aim point.  All present analyses have been based on 

fixed-length bursts.  The complex case in which bursts are 

re-aimed on the basis of observation has not been analyzed. 

Preliminary analyses have been conducted of multiple-tube 

firing cases, and it has been determined that the attrition 

rate for both volley and salvo fire may be represented by the 

same formulae.  The method developed considers a weapon sys- 

tem which, perhaps not knowing the exact location of targets, 

fires indirectly into an area with a projectile that delivers 

damage-producing effects over part of the area.  Parameters 

included in the method are shown in Figure 4.  Each of these 

parameters can be predicted from basic hardware character- 

istics of weapons systems and targets. 
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* 

TIME TO ACQUIRE A TARGET 

TIME TO FIRE THE FIRST ROUND 

TIME TO FIRE A ROUND FOLLOWING A HIT 

TIME TO FIRE A ROUND FOLLOWING A MISS 

PROJECTILE FLIGHT TIME 

PROBABILITY OF A HIT ON FIRST ROUND 

PROBABILITY OF A HIT ON A ROUND FOLLOWING A HIT 

PROBABILITY OF A HIT ON A ROUND FOLLOWING A MISS 

PROBABILITY OF DESTROYING A TARGET GIVEN IT IS HIT 

PROBABILITY OF DESTROYING A TARGET GIVEN IT IS MISSED 

Ü 

Figure 3 Factors Included in Attrition Rate for 

Single-Shot Markov-Fire Weapon Systems 

\^ 



. 

25 

n 
• 

WEAPON AIMING AND BALLISTIC ERRORS 

TARGET LOCATION ERRORS 

WEAPON FIRING RATE 

VOLLEY DAMAGE-PATTERN RADIUS 

TARGET DISTRIBUTION 

TARGET RADIUS 

TARGET POSTURE 

PROBABILITY THAT THE TARGET IS DESTROYED GIVEN 

IT IS COVERED BY DAMAGE PATTERN 

Figure 4  Factors Considered in Attrition Rate for 

Indirect, Area-Fire Weapons 
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Finally the mixed mode firing doctrine in which a period 

of single-shot fire is followed by burst fire has also been 

analyzed. 
• 

i 

3,2    The Allocation Factor 

As noted earlier, the allocation factor is the pro- 

portion of the i  Blue group systems assigned to fire on 

j  group Red targets.  This is included since only those        [ 

systems directing their fire (or other lethal effects) on 

the j  group or its area are likely to cause attrition of f 

. 

- 

the target.  The allocation factor may be input by military      * 

judgment reflecting the assignment strategies deemed most 

appropriate to the tactical situation.  This factor may be 

input directly or determined from a priority or target worth 

scheme. 4J 

Research in this area has focused on the determination 

of optimal or good allocation strategies when the battle 

dynamics are described by the coupled sets of heterogeneous 

differential equations shown earlier. The research is de- 

scribed in [D, 2.0].  The results obtained are based on the 

following assumptions: 

(1) Zero time is required to switch from one target 

group to another, 

(2) Projectile flight times are small, and 

(3) The groups have perfect control and intelligence. 
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The research has shown that, for linear payoff functions, 

it is ineffective for individual weapon types to distribute 

their fire over different target groups.  That is, all i-group 

weapons should engage all j-group targets with no splitting of 

fire allocation within a group.  The optimal assignment stra- 

tegies are such that all weapons of a single group should 

be assigned to a single group in the opponent's arsenal. 

Mathematically, 

1  for j = K 
e..(r) = { for i = 1,2,... ,1 

J      'o  for j t  K 
[6] 

h..(r) = 
1 for i = L 

0 for i i  L 
for j = 1,2,...,J , C7] 

where K and L denote a specific weapon type in the Red and 

Blue forces, respectively. 

The research has also shown that the choice of group 

to be fired upon is independent of the number of weapons 

in the firing or target group.   The class to be fired 

upon is selected by determining the maximum attrition rates 

on the marginal utilities of the opposing groups and not 
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directly by the number of weapons in thu opposing group«. 

Furthermore, although previous roscurcli (Snow, 19*;3) employed 

the assumption that the allocation coefficients were constant 

throughout the battle, it has been shown that switching 

surfaces do exist, i.e., the optimal allocation strategy 

changes during the battle even though none of the Blue 

or Red force groups are annihilated. 

Closed-form analytic solutions for the optimal alloca- 

tion strategies (initial allocation and switching surfaces) 

have been obtained for the two-on-one battle, i.e., two 

groups on one side and one on the other.  The method used 

is applicable to higher-order battles; however, the mathe- 

matics gets extremely cumbersome. 

. 

«- 

II 

3.3 The Intelligence Factor 

As previously noted, the intelligence factor is the pro- 

portion of the i  group firing Blue weapons allocated to 

the j   Red group which are actually engaging live j  group 

Red targets.  This factor is included to consider the loss 

in efficiency (effectiveness) of a firing weapon when it is 

firing on either targets already attrited or on areas that 

»« 

This has an obvious implication on intelligence requirements 
during a battle for allocation .  All that needs to be known 
is that there exists a live j-group target and not the number 
of live weapon systems in it. 
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are void of targets.  Research in this area is described in 

[E, 1.0] and suggests that the intelligence factor should be 

predicted as 

I(r) , _iA _ ,        (8) 
PvTv + PDTD + PLTL 

where 

p, = the piobability of firing on a live target, 

pj% = the probability of firinp, on a dead t/u^el, 

pv = the probability of firing in a void area, 

T, = the expected or average time to fire on a 

live target, 
« 

Tß = the expected or average time to fire on a 
dead target, 

Ty = the expected time to fire on a void area. 

At the present time, only the parameter T., which is equal to 

the expected time to defeat a live target,1 can be predicted 

as input.  Research is required to develop methods to esti- 

mate the other parameters. 

That is, T^ is equivalent to what was previously referred 

to as the expected time to kill a target, E[T..|r]. 
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Chapter H 

COMBAT MODEL SOLUTION PROCEDURES AND RESULTS 

Seth Bonder 

The basic structure assumed to describe the combat 

activity was given by the coupled sets of differential 

equationJ 

I 
dn.    V^ 
-T--- = - / -*    A.. (rOm.     for A  = i o    .T 

1=] 

J 
dm. 

a -i =  ->   B..(r)n.     for 1 = 1,2,...,1. 
t     Z*-*  "ji   -i 

j = l 

The preceding chapter summarized methods that have been 

developed to predict inputs to these equations—the attri- 

tion rate* the allocation factor, and the intelligence 

factor.  This chapter briefly presents results of research 

that has been directed to obtaining solutions for the above 

equations, where a solution is taken to be the trajectory 

of surviving forces of each type during the battle as a 

function of basic inputs and initial numbers of forces. 

Ideally, it would be desirable to nave the solutions 

in simple, closed form which would readily portray the rela- 

tionship between the independent factors of the combat process 

and the surviving numbers of forces.  This would facilitate 

logistics and locations of survivors can also be determined 
part  f tne solution, but are omitted in this discussion. 
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both sensitivity analysis and determina+ic-. of those inde- 

pendent variables which significantly contribute to combat 

effectiveness.  Attempts to obtain such closed-form solutions 

have focused on simplified cases of the combat equations 

in order to obtain some insight into the solution procedures 

and problems related thereto.  These simplified cases include 

(a) homogeneous-force battles (one group on each side) and 

(b) constant-coefficient, heterogeneous-force battles. 

A summary of the results of these research efforts are pre- 

sented in succeeding sections. Details of the homogeneous- and 

heterogeneous-force battle solutions are given in Parts C and D, 

respectively. A numerical solution procedure was developed to 

solve the equations for simplified tactical situations involving 

heterogeneous forces and variable attrition cot ficients.  This 

procedure is described in [D, 3.0]. 

4.1     HomooeneouQ-Force  Results 

We considered first the simplified case of homogeneous- 

force battles with unKy intelligence coefficients.1 The general 

heterogeneous equations noted above r- ducc to 

"dt   -e»(r)m(t) (9) 

dm(t) _ 
dt -3Cr)h(t). (10) 

All research presented in this report has considered unity 
intelligence coefficients. 
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Since there is only one group on each side, the allocation 

factor is also equal to unity for each force.  In these equa- 

tions explicit notation showing the time and range dependen- 

cies are given. 

In order to include explicit consideration of some di- 

mensions of mobility, the one-dimensional battlefield coor- 

dinate system shown in Figure 5 was considered.  The symbols 

s and s , are the distances of the Red (n) and Blue (m) 
n     m' 

forces, respectively, from some common reference.  The above 

equations can be converted to the space domain depicted in Fig- 

ure 5, resulting in the following differential equations: 

±J} + IK - i —1 --- - fSfiA n = o 
dr2   U

2   **Jdr  ^v2j (11) 

,ym   ,   fw 1 d3l   dm      faf\m  .   n ,_0, 
7    L7   Fa?J ~dF~ 7      ° '        (12> d 

7s 

These equations explicitly include maneuver characteristics 

of the forces such as speed (v) and acceleration (to) and the 

range variation in attrition rates when the forces employ 

mobile weapon systems. 

The solution of these equations required knowledge of 

the attrition-rate functions, a(r) and ß(r) for the Blue and 

It was noted in the preceding chapter that the attrition-rate 
function is defined to be the variation with range in the 
reciprocal of the expected time-to-destrov a target. 

a 
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(Reference) 

n 

v.    v n    in 

m 

where 

n  m the distances of the Red (Blue) 

forces from some common references. 

r  =  force separation, 

n  m 
velocity of the Red (Blue) force. 

v  =  relative velocity between the Blue and 

Red force (v - v ). m   n 

Figure 5  One-Dimensional Battlefield Coordinate System 
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Red weapons systems, respectively. Examination of data for 

some representative weapons systems suggested a number of 

forms for the attriticn-rate functions, some of which are 

shown in Figure 6. These characteristic shapes were given 

appropriate mathematical descriptions, e.g., linear, qua- 

dratic, exponential, and cosine attrition-rate functions. 

In each case the range R is that force separation at which a 

the homogeneous-force battle equations with these attrition- 

rate functions under the assumption that the acceleration of 

forces was zero (to = 0), i.e., a constant-speed battle.  For 

example, assumptions of linear attrition-rate functions for 

both Red and Blue weapons are shown in Figure 7(a).  Here 

R and Rß are the ranges at which the Blue and Red weapons 

systems, respectively, first achieve nonzero attrition rates. 

The resultant equations could not be solved in closed form 

without further assuming a constant ratio  of Red to Blue 

attrition-rate functions.  This last assumption for linear 

attrition-rate functions is shown in Figure 7(b).  A general 

closed-form solution was developed for any pair of attri- 

tion-rate functions such that tf(r)/a(r) = constant. 

Even with these overly siinplified, restrictive assump- 

tions, solutions to the variable-coefficient differential 

equations gjve ri^e to some interesting insights and 

i 
i 
! 

.1 

the weapon first attains a nonzero rate of attriting targets. 

Attempts were made to obtain closed-form solutions ror 

- 
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Attrition 
Rate 
a(r) 

Range r a 

Figure 6  Attrition-Rate Variations with Range 

(a) (b) 

/.Mrition 
Kates 

a 

Attrition 
Rates     3 

R. a h 
Range  r p - • a;ire  r 

Figure 7     Attrition-Rate Accuiinptionr? 
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comparisons with existing theories.  In particular, the 

classical constant-coefficient Lanchester formulation of this 

problem suggests that a Blue force will lose a battle when 

2    2 
crtT < 3N  , 

M{:jN 

I 

! 

where M and N are the initial numbers of Blue and Red forces,      I 

respectively.  This lose condition implies complete annihila- 

tion of the losing force. 

Analysis of the variable-coefficient solutions, however,      i 

indicates that this win-or-lose condition is completely mis- 

leading.  Rather, one should consider some measures of effec-      | 

tiveness (numbers of survivors, difference of survivors, 

ratio of survivors, etc.) at the end of the battle instead 

of the complete annihilation conditions.  Thus, one may » 

choose to consider any or all of the above measures of effec- 

tiveness when the force separation is zero (the attacker 

crosses over the defended line) or some prespecified break- 

point in terms of survivors and/or force separation.  When 

this is done, then the results of the battle are highly de-       • 

pendent on the assault speed and the relationship between 

the initial.   Linear,   and quadratic  conditions defined below: 

Initial   Condition: 
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Linear Condition: 

V«{"J v 
Quadratic Condition: 

«/ | I J 60N
2 , 

where a and $ are the attrition rates for Blue and Red 

weapons, respectively, when their force separation is zero. 

The effect of these conditions and the use of mobility as 

measured by the assault speed are shown in Figures 8 through 

11.  The figures show the effect of the assault speed on the 

difference and ratio of surviving forces at the end of the 

battle. 

The conditions shown in Figures 8 and 9 suggest, by 

classical Lanchester analysis, that the Blue force will be 

annihilated.  This is true if their assault speed is less 

than 4 mph.  However, increasing their assault speed to 

approximately 20 mph will result in their arriving at the 

defended position with a superiority of 14 units (where the 

initial superiority was 20) or a ratio of 2.9 to 1, where 

the initial ratio was 3 to 1.  These figures are suggestive 

of two phenomena: 

1.  Attacking with sufficient speed is a means of con- 

serving one's own force, i.e., get the enemy before 

he gets you.  This we might term a saturation 

principle in that we saturate the enemy's retalia- 

tory firepower capability with maneuver. 
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2. Increasing the assault speed increases the satura- 

tion effect; however, this effect has a decreasing 

marginal benefit. 

The decreasing marginal utility of increasing assault speed 

is evidenced in both Figures 8 and 9; however, it is more 

pronounced in the ratio measure of effectiveness. 

In contrast the these results, the conditions of Fig- 

ures 10 and 11 suggest, by classical Lanchester analysis, 

that the Blue force will annihilate the Red force. This will 

occur only if the Blue force assault speed is less than 

13 mph.  Increasing their assault speed above this will re- 

sult in their arriving at the objective with a lower super- 

iority, measured by the difference and ratio of forces.  It 

is interesting -o note that when the measure of effectiveness 

is the force difference at the objective, there is a unique 

worst speed for the Blue force to attack; however, the ratio 

of surviving forces continues to decrease with increasing 

assault speed. 

Although closed-form solutions to the homogeneous-force 

combat equations when the ratio 3(r)/a(r) is not constant 

have not been obtained to date, research efforts have been 

directed to obtaining parity conditions (conditions leading 

to equal numbers cf survivors on both sides at the end of the 

tattle)  Based on the work described above, we felt that 

•* 
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i 
! 
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these conditions would depend not only on the force sizes 

but also on the shape of the attrition-rate functions, the 

effective ranges, the range at which the battle is initiated, 

and the mobility of the attacking force. 

Approximate solutions to the parity conditions have 

been obtained analytically (see [C, 4]); however, they have 

not provided a great deal of insight to date.  Analog com- 

puter solutions to the equations, however, have tended to 

support the above conjectures.  The analog computer provides 

a visual display of the solution space when parameters such 

as initial number of forces, assault speed, effective range 

of the weapons, opening range of the battle, etc., are varied 

Systematic variations of these parameters were made to ob- 

serve the trajectory of the parity conditions Cm s n at 

range r = 0). These are described in [C, 5]. 

Some typical plots of the solutions are shown in Fig- 

ures 12, 13, and 14 for the absolute number of survivors, 

the difference in survivors, and the ratio of survivors, re- 

spectively, at the end of the battle.  The parity points for 

variations in the initial numbers of the Red force are indi- 

cated by solid circles.  Immediately obvious from these fig- 

ures is the fact that the assault speed is an integral factor 

in predicting parity points.  More importantly, there appear 

to be optimal assault speeds such that deviations from these 

optima can have significant effects on the battle results. 

T The principal factors in the classical Lanchester parity 
conditions. 



_ 
1'
 

•.
 
 

. 
 
 
-
-
=
»
"
 

30
 

r 
n 

3L
» 

c
 
u.

n 
•'
- 

F
i
g
u
r
e
 
12
 
 
N
u
m
b
e
r
 
o
f
 
S
u
r
v
i
v
o
r
s
 
a
t
 
R
a
n
g
e
 
r
 
= 

0 
(
L
i
n
e
a
r
 
A
t
t
r
i
t
i
o
n
 
R
a
t
e
 

R
« 

* 
R
ft

> 

-r 



"' 
•'

_ 
 •'
••

• 
   

" 
" 

 ' 
'•

  '
- 

  "
•"

   
  '
•

    
    

••
'•
•J

iia
j 

i •
  •
 

I 
i 

ii
   

• 
I

   
   

  '
I 

'   
i^

^
^

^
 
 
 

; 
—

 
• 

»
• 
"

—
—

 

O
 

C
 

O
 6 II

 

X
) o 

-8
0

 

-2
0

  
  
- 

-4
0

 

-6
G

  
  
 -

 



11
 
•
'»
 

I 
 

 
 
 
 

••
 I
 
'•
*

 

IS
 

- 

10
 

o
 £ 

5
L
 

u
 

t_
 

F
i
g
u
r
e
 
14
 
 
Fo
rc
e 

R
a
t
i
o
 
at
 
R
a
n
g
e
 
r 

= 
0 

(L
in
ea
r 
A
t
t
r
i
t
i
o
n
 
Ra

te
 
R a
 

i 
  R
ß
> 

60
 

! 
 
 
m
/
n
 

vs
 
V 

M
 =
 o

 C
 

C
D
 

i>
J 
=
 -

 .
« 
-
 

V 
(m
/s
ec
) 

• 
 

!
-

 

•.
 
 

»
 
 

»
 

' 
 
 
 

* 
 
 

• 
 
 
 
 
—

 '
A
 

I 
. 

• 
*
~
*
  
 
ff

- 
I 

• 
2 
 

i 
• 

- 
 
•
•
*
*
!
 
 
*
»
—
|
 



Al 

This point is highlighted in Figure 14, where for an ini- 

tial ratio of Blue to Red units of 1.43 (100 Blue to 70 

Red), an assault speed of 15 meters/second produces a final 

ratio of forces of 14.5 to 1.  A reduction üf only 5 meiers/ 

second assault speed would produce a final raiio of Blue to 

Red forces of less than !.U. 

. . 

I 

4,2    Fire-Support Engagement  Results 

Based on the previous results, it was recognized that 

the range dependency of the ratio of the attrition-rate 

functions was a major factor in inhibiting analytic solution 

procedures. Accordingly, to obtain some solution insights, 

a hypothetical "fire-support" situation was developed for which 

the Blue attrition-rate function was a constant and the Red 

weapon attrition-rate function was a linear function of 

range.  This combination of attrition-rate functions leads 

to their ratio being range dependent but the equations are 

amenable to analytic solution.  The tactical situation is 

shown in Figure 15 and depicts 

1. a Red force (n) defending a fixed position at 

r = 0; 

2. a Blue force (m), under fire from the Red force, 

moving from r = R (range at which the battle 

begins) to r = R at a constant speed (v) without 

returning fire on the Red force; 



Hb 

Red 
Defensive 
Pos it 5. on 

Blue 
Attackers 

A A 

Support 
Units 
(l-p)M 

s o 

Range r 

Figure 15  Fire-Support Tactical Situation 

a(r) = k (R - r) a a 

B(r) = kp(Rg - r) 

aB = k (R„ - R) s   a a   s 

Range r 
all 

Figure 16 Attrition-Rate Functions for the 
Fire-Support Situation 
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3. at r = R , a percentage p of the remaining Blue 
s 

force (M_) continues to advance \t  speed v with- s 
out firing.  The regaining (1 - p)M Blue units s 
stop and provide supporting fire on the Red force. 

4. Red fires only on the moving Blue units. 

The attrition-rate functions which result from this situa- 

tion are shown in Figure 16.  The Red force attrition rate 

varies with range since Red units engage closing Blue units. 

The Blue attrition rate is a constant, a = k (R - R ), 

since the supporting fire Blue units remain a fixed distance, 

R . from the Red units.  Solutions to the resultant differ- s' 

ential equations have been obtained and some analysis of 

optimal tactics (assault speed, percent force split, etc.) 

conducted.  This work is described in [C, 6]. 

4.3    äeterogeneouB-Foroe Results 

A long-range objective of the research program is to 

obtain usable analytic solutions to the sets of variable- 

coefficient differential equations used to describe combat 

among heterogeneous forces.  These are equations 1 and 2 in 

Chapter 2.  The preceding sections discussed research to 

obtain solutions for simplified forms of these equations for 

homogeneous forces and a fire-support situation which retained 

the complexity of the variable attrition-rate functions. 

Research has been conducted on another form of simplification 
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in which we retain the generality of heterogeneous forces, 

but consider the attrition-rate functions to be independent 

of range for all weapons in the battle. 

Previous research efforts in this area (Snow, 194 85 de- 

veloped solutions for this situation under the assumption 

that each Blue group distributes its fire over all Red groups 

and each Red group distributes its fire over all Blue groups. 

That is, the allocation factors e^. > 0 and h.. > 0 for all 

i and j. This assumption appears to be highly unrealistic in 

that it requires ineffective weapons to fire at targets they 

cannot destroy (a rifle firing on an armored tank) and an 

over-allocation of firepower (a long-range missile firing at 

an infantryman). 

A general solution to the heterogeneous-force, constant 

attrition-coefficient battle model for any allocation policy 

has been developed. The solution methods are simplified, 

and thus more ubeful for analysis purposes» when the optimal 

zero-one allocation strategy is employed. 

General analytic solutions to the heterogeneous-force, 

variable-coefficient battle models could not be developed. 

A numerical procedure was developed to solve the equations 

for simplified tactical situations in which the heterogeneous 

combat groups may have different locations and where the vari- 

ation in attrition coefficients with range is explicitly 

i 
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considered for each group.  Thij procedure, which is de- 

scribed in CD, 3.0], was developed pr?marily ior use as a 

research tool. 

/ 
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Chapter 5 

RELATED RESEARCH RESULTS AND FUTURE NEEDS 

T>eth Bonder 

The research described in this report is viewed as the 

beginnings of research activity to develop analytical models 

of relevant military processes that can efficiently and ef- 

fectively be used in analysis of both small and large-scale 

military activities.  This long-range objective will require 

the development of analytic structures for each of the rele- 

vant military processes (such as combat, reconnaissance, 

logistics, etc.) and research on methods of combining them into 

an integrated set of analytic procedures. 

Modeling emphasis to date has been directed to the de- 

velopment of differential models of the combat process and 

associated allocation strategies.  This chapter summarizes 

some related modeling results developed under the cited con- 

tracts and lists a few areas deemed important for future 

research. 

I 
5,1    Preliminary Modeling of Surveillance Patrols 

Except fcr the intelligence factor included in the com- 

bat model structure, the differential models of the combat 

activity essentially ignore the intelligence-gathering or 

reconnaissance process that could reasonably have a large 

effect on combat effectiveness predictions, especially when 
:: 

:: 

i 



1 ""  JJ-*iww.»i" v^mmsmwwmtsm~~ —«i        HI i _  HHIIMWUM 

53 

one considers its interaction with the allocation strategy. 

It was thought that many of the existing search and recon- 

naissance theories would be useful for predicting the amount 

of intelligence-gathering capability possessed by a tactical 

unit.  A thorough literature search in this area, however, 

indicated that existing theories are less than useful for 

this purpose (Moore, 1970).  Most of the research efforts 

have been devoted to a development of strategies for the op- 

timal allocation of search effort ana little to the develop- 

ment of descriptive models of intelligence-gathering processes 

nor its interaction with the combat activity, i.e., "sub- 

sequent action." The existing results do not consider im- 

portant aspects such as intermittent target visibility, mul- 

tiple targets, moving targets, and others.  Accordingly, a 

small part of the research effort was devoted to the develop- 

ment of preliminary models of the intelligence-gathering 

process, specifically surveillance patrols. 

The surveillance situation modeled is shown in Figure 17, 

where 

v = speed of movement between subareas, 

A = total area searched, 

a. = area of i ,th subarea searched, 

d. - distance between subareas (i - 1) and i, 

n = number of subareas searched. 

.' 
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Figure 17 Surveillance Patrol 

Search in successive areas A may be considered continuous 

search associated with a mobile force situation<  Search in 

just one area A might be considered a periodic area surveil- 

lance to obtain general information during a static situation. 

The models were developed on the assumption that the sur- 

veillance unit moves into a subarea and, as a unit, scans the 

area as a single sensor. The patrol leaves a subarea and goes 

r 

i 
• 
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: 

to another at the time it detects the target's presence or 

after a specified time during which it has not detected a target. 

A number of models of the surveillance activity noted 

above were developed, each differing in assumptions regarding 

the stochastic nature of the visibility process (existence of 

line-of-sight).  Mathematical expressions were developed for 

(a) the probability of detecting a target in a subarea, 

(b) the probability density function (pdf) for the time 

to detect a target in a subarea, given it is de- 

tected, 

(c) the pdf of the time spent in a subarea, 

(d) the pdf of the time until the first detection, 

(e) the probability of detecting a target during the 

patrol, 

(f) the pdf of the number of targets detected, and 

(g) the pdf of the time spent searching the total area. 

Thetna expressions explicitly include the target's location, 

effects of the sensor capabilities, mobility of the sensors, 

and the line^of-sight disturbances of the terrain.  The mathe- 

matical developments are described in [E, 2]. 

Modeling effort was also directed to the development of 

general mathematical structures to describe the visibility 

(line-of-sight) process. The model developed considers 

multiple periods of intervisibility between the sensor and 

the target and contains formulae for 

u 
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(1) the probability that the target is visible for a 
given time t; 

(2) the pdf of the length of time that a target will 
remain visible, given that it is visible at t; 

(3) the pd£ for the number of times the target will be 

(«O the pdf for the total time of visibility in t ; s 
(5) the pdf for the number of visible targets at time t 

if there are N independent targets; 

i 

f 
visible in a fixed interval t ; + 

«• 

I ; 
(6) the probability density function for the number 

of sightings in (0,t ) if there are N targets. s 
This work is described in [E, 33. 

5,2    Stoohattio Duels with Reliability and Mobility 

The development of the differential models of combat        *» 

i extended the earlier Lanchester formulations to include 

mobility of both forces, microscopic details of the weapon 

systems in the attrition coefficients, and the fact that the 

attrition coefficients vary when forces employ mobile weapon 

systems.  This approach was taken based on the iudgment 

it would be more difficult at this time to enrich the 

stochastic duel theories (which already considered micro- 

scopic weapon system parameters) to include more than single 

duelists and simultaneously consider mobility of these forces. 

A small effort, however, was devoted to extending the Hon«- 

on-oneM stochastic dual descriptions to include reliability 

[! 
• -. 
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n 
• 

; 

of the duelist's weapons and initial elements of mobility. 

This research is described in CF, 1]. 

Previous work in stochastic duel theory included some 

natural limitations of weapon systems in duels involving 

limited ammunition supplies and time limits.  Another natural 

limitation of a weapon is the reliability of its firepower. 

The denigration of a weapon may be due to factors such as 

severe natural environment, lack of preventive maintenance, 

and the use of the weapon when fired. The first two factors 

concern the study of reliability and maintenance per se, 

while the third factor is more complex, since more than the 

temporary loss of firepower is at stake in combat. 

Models were developed to describe catastrophic failures 

of firepower, leaving the duelist entirely helpless or forcing 

him to withdraw from the duel. Reliability is treated both 

as a function of time ?.nd as a function of the number of rounds 

fired, the latter as a more realistic model which relates 

the chance of breakdown to actual use of the system. The 

probability of one side winning is found for all the duels, 

and the results are compared with those for the corresponding 

"fundamental" stochastic duel. 

A simplified model was developed to reflect the effect 

of mobility in a stochastic duel. The model incorporates 

single-shot kill probabilities that vary with time—the time 

3 
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dependence occurring due to the basic dependence of accuracy    - 

and lethality on range to the target and the range variation 

due to movement of the weapon systems during the duel. 

5.3    Future Research 

During the course of research effort described in this 

report, it has become increasingly clear that research in 

other closely related areas will have to be performed in 

order to develop a reasonably complete spectrum of analytic 

models for defense planning. A brief description of some of 

these areas is given in this section. 

Reoonnaiaeanoe Research 

A small amount of research effort was devoted to the 

development of preliminary mathematical structures of sur- 

veillance patrols which include effects of the visibility 

process, sensor detection capabilities, and mobility of the 

sensor system.  It is felt that this work should continue to 

make the models more realistic of the reconnaissance process 

and to determine optimal search strategies when explicit 

consideration is given to intermittent line-of-sight. Ad- 

ditionally, research should be directed to the problem of 

.  . ... L; 
interfacing the reconnaissance activity with "subsequent 

action," primarily the combat activity.  Questions that need      || 

See [E, 2.5] for suggested areas of enrichment. 
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be considered in this area include 

(a) What model structures are needed to interface the 

reconnaissance activity and subsequent action? 

(b) Can the effect of "false alarms" be effectively 

included in models of the reconnaissance activity 

when subsequent action is considered? 

(c) What effect will consideration of subsequent action 

have on the optimal allocation of search effort? 

I 

u 

L 

Large-Soale  Unit Modeling 

Although the long-range objective of the research program 

is to develop models for both the microscopic weapon system 

planning problem and the macroscopic one of force structuring, 

/ ± 
initial efforts have been devoted to describing the micro- 

scopic structure of combat.  Models to predict the attrition 

coefficients are being developed from elemental character- 

istics of individual weapon systems.  These are then used as 

distinct parameters in the heterogeneous-force model for each 

i group in the Blue force and each j group in the Red force. 

There appear to be problems of size in using these models 

for large-scale force structuring due primarily to the large 

number of dimensions in the formulation, i.e., consideration 

of only the attrition rates gives rise to I«J dimensions. 

Therefore, research is needrd to determine the following: 

XIn contrast to the small unit composition of mixes of weapons 
systems. 
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1. The direct application of the heterogeneous differ- 

ential equation formulation to large-scale force 

structures by reducing the dimensionality of the 

model. Methods would have to be developed to aggre- 

gate the attrition coefficient for different weapon 

groups to attrition coefficients for tactical units, 

which would then be used as input to a large-scale 

heterogeneous-force formulation. 

2. Develop means of using the output of the microscopic 

heterogeneous model (which uses attrition coefficients 

for individual weapon groups) as input to other, per- 

haps differential equation type, models of large- 

scale force combat activities. 

Clo8e-Combat Research 

The models currently under development will provide pre- 

dictions of four basic dimensions of combat—time, space, 

casualties, and resources expended.  Usually, some measure 

of effectiveness such as the ratio of survivors, the differ- 

ence of survivors, and the percentage of survivors, at ranges 

close to the objective is computed and used as an indication 

of whether or not the combat activity was "successful." 

However, little is known regarding the correlation between 

these measures and successful accomplishment of a mission. 

T 
Examination of Figures 13 and 14 indicates that recommended 
assault speeds would differ for the difference and ratio 
measures of effectiveness. 

:: 
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Accordingly, it is felt that research is needed to assess the 

predictive capability of these measures for different combat 

activities. 

o 

Approximations  to  Variable-Coefficient Formulations 

As shown in the solutions to the homogeneous-force models 

u *.th variable coefficients, variation in the attrition co- 

efficients during a battle appear to have a significant effect 

on the battle results.  During some of the applications of 

the differential combat model in the Main Battle Tank pro- 

gram, however, it was found that in some situations the re- 

sults of battle could well have been predicted with a con- 

stant-coefficient model of the battle activity.  Accordingly, 

it is of research interest to see if an appropriate "average" 

attrition rate over all ranges of a battle can be determined 

which, when used in a constant-coefficient formulation, would 

produce similar results to the variable-coefficient hetero- 

geneous-force models.  The constant-coefficient heterogeneous- 

force analytic solutions developed to date can be used in this 

study. 

Logistics Research 

The models described in this report can be used to give 

an indication of the logistic support requirements for ammu- 

nition and POL.  The time-to-kill probability distributions 

i 
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are developed from the more fundamental distribution of the 

number of rounds required to defeat a target.  Thus, there 

exists a means of determining the amount of ammunition re- 

quired to obtain a specific level of combat effectiveness 

predicted by the differential combat models.  Since the lat- 

ter also include the spatial distribution of forces and their 

maneuver during engagements, POL requirements can be deter- 

mined from the specific capabilities of vehicles employed. 

Thus, the models assume an infinite inventory of ammunition 

and POL with no constraint on the combat activity.  Research 

should be directed to developing an explicit logistics model      J 

which can be integrated with the combat formulations to re- 

flect logistics restraints on the combat activity. 

i 
! 

I 
I 
! 

Mobility  Research 

The effect of the mobility of combat units is considered 

in the differential equation formulations in a rather re- 

strictive sense by examining the effect of mobility during the 

engagement. This might more appropriately be called the ef- 

fect of maneuver, with mobility being reserved for the strate- 

gic aspects of transporting the units to the battle area. 

Clearly, in the structuring of large-scale forces, the planners 

must trade off the firepower and maneuver capabilitities of 

units and the ability to transport them to threat areas as 

n 
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required. It is felt that analytic models of mobility that 

can be interfaced with models of combat between large-scale 

forces are needed. 

Command ana Control Research 

As noted in the earlier discussions of the combat model, 

the allocation strategies being developed assume not onl} 

perfect intelligence but also perfect command and control. 

That iSj. given one determines optimal allocation strategies, 

can the command-control system implement the assignment pol- 

icies? Research in this area should be directed to determining 

1. how to reflect imperfect command iand control in the 

combat model formulation, especially in its inter- 

action with the allocation policies, and 

2. how to predict the amount of command-control capabil- 

ity possessed by a tactical or strategic unit. 

Intelligence Research 

The differential models of combat include an intelligence 

factor as one of the elements in the attrition coefficient. 

This factor is included to account for the loss in efficiency 

(effectiveness) of a firing weapon when it is firing on either 

targets already attrited or on areas that are void of targets. 

A model was developed to predict the intelligence factor 
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(see equation 8, page 29); however, methods of estimating 

only one of its input parameters—the expected time to fire 

on a live target—are available.  Research is needed on 

methods to estimate the other parameters of the intelligence 

iactor model. 

. 
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Appendix A 

.; 

TEST OF THE GENERAL MODEL 

Seth Bonder and Robert Farrell 

I 

As noted in the introductory chapter, the objective of 

this research program is the development of analytic models 

for defense systems planning.  Chapters 2, 3, and 4 summar- 

ized the basic structure used to describe the combat process, 

the development of models to predict inputs to the structure, 

and research efforts to obtain analytic solutions to the com- 

bat formulations.  Conceptually, one may view all the results 

described earlier as hypotheses or theories that need be 

verified against actual data, or at least compared to the 

results of detailed Monte Carlo simulations. 

Under a separate contract with the Directorate, Weapon 

Systems Analysis, Office, Assistant Vice Chief of Staff, U.S. 

Army, a rtudy was conducted to compare the combat predictions 

generated by the differential model of combat to those pre- 

dicted by more detailed Monte Carlo simulation methods. 

Under this study, the general heterogeneous-force model with 

variable attrition coefficients was applied to a set of 

This study was conducted by Vector Research, Incorporated, 
whose principals developed the methods described in this 
report. 

iiuutm'iwmm wtm —»••• 
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main battle tanks and personnel carriers, the Blue attack 

force had long-range missiles and short-range missiles, 

with rapid-fire weapons systems. 

The Monte Carlo simulation of this engagement considered 

the movement, acquisition, and combat activity (duels) of 

each and every unit in the battle.  Maneuver, in terms of 

Some of the engagements considered as many as 100 individual 
weapon systems. 

F 

I! • - 

fl 

tactical situations used in the TATAWS-III study, which is 

part of the overall Main Battle Tank (MBT-70) study pro- 

gram.  The Individual Unit Action (IUA) Monte Carlo Simula-       T 

tion of ground combat was used to evaluate candidate main 

battle tank systems and force structures of proposed bat- 

talion task forces. 

Figure 18 depicts one of the tactical plans considered 

in the Main Battle Tank program to which the differential 

model of combat was applied. The tactical plan shown is a 

Blue attack engagement against a fixed Red defensive posi- 

tion.  The attack is conducted along three major axes with 

four individual routes of advance per axis.  Each route con- 

sists of individual main battle tank candidates and/or sup-       T 

porting armored personnel carriers equipped with rapid-fire 

T weapon systems.  In addition to these maneuver units of ^ 

i 

i 
shown in the figure.  The defending force is comprised of        $ 

tanks, missiles, and armored personnel carriers equipped 

:: 

o 
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attack speed and accelerations, over different portions of 

the terrain was considered for each weapon, based on pre- 

pocessed terrain analysis. The existence or nonexistence 

of line-of-sight between weapons systems for each route to 

all other weapons systems was used as input.  Preprogrammed 

target priority tables were used to specify the allocation 

of individual weapons to targets. A replication of the sim- 

ulation consisted of moving each of the systems down their 

prespecified paths and evaluating by Monte Carlo means the 

acquisition and attrition process (the fundamental duel 

event) for each weapon system during the course of the en- 

gagement. The engagement was replicated many times to ob- 

tain a level of statistical stability for the results. 

The heterogeneous-force differential combat model was 

applied to this and other engagements by aggregating individ- 

ual weapons systems into groups.  Thus» for each route on an 

axis there were two separate groups of main battle tanks or 

armored personnel carriers.  The long-range missiles were 

aggregated into one group and the short-range missiles were 

aggregated into three groups, one for each axis.  The Red 

defensive force was aggregated by weapon type for each axis, 

thus producing nine Red defensive units.  Also included, but 

not shown in the figure, were indirect*fire artillery weapons 

systems for both forces. 

r 
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The attrition coefficients for each group on appropriate 

target groups were calculated using the same basic acquisi- 

tion, firing time, accuracy, and lethality data used in the 

simulation.  The coefficients were computed at 250-meter 

increments to the target out to a maximum range of 3,000 meters 

and stored as attrition-coefficient lookup tables.  The al- 

location factors (e.. and h..) employed were based on the 

priority tables used in the simulation.  The intelligence 

factor was set equal to 1.0 since these effects were not con- 

sidered in the simulation. 

Mobility and line-of-sight were considered in a determin- 

istic manner similar to that employed in the simulation.  Av- 

erage speeds and lines-of-sight over segments of the routes 

were input for each of the aggregated groups.  Thus, a group 

was moved as a whole, and visibility did or did not exist 

to the group as an entity. 

It was noted in Chapter 4 of the text that closed-form 

solutions to the general heterogeneous-force, variable-coef- 

ficient, differential-equation model do not exist. Accord- 

ingly, the equations were solved numerically using the pre- 

computed attrition coefficients and prespecified allocation 

factors which were stored as lookup tables. 

I 
I 

if 

"A separate acquisition model was developed to estimate the 
percentage of surviving targets that were detected and, ac- 
cordingly, could be allocated fire. 
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Using this approach, the model was applied to short- 

range defense and long-range attack engagements considered 

in the Main Battle Tank study program.  Using these engage- 

ment types, six separate runs involving different weapon 

systems and force structures were made for comparison with 

the simulation results.  These comparisons are shown in 

Tables 1-3. 

Table 1 presents a comparison of the results of one of 

the short-range defense engagement4. The initial numbers of 

forces and the numbers of survivors at three analysis points 

as predicted by both Monte Carlo simulation and the analytic 

model are given.  The analysis points are defined by the 

percentage of Red tank survivors: low equal to 70 percent, 

principal equal to 50 percent, and high approximately equal 

to 20 percent.  The times at which these analysis points are 

reached in each of the models is also given.  Two sets of 

results at the low analysis point in the analytic model are 

shown since there was an appreciable attrition in the 240- 

250 time interval. 

Table 2 presents the comparisons of tank survivors at 

the three analysis points for the other or short-range de- 

fense engagements, and Table 3 presents the comparisons of 

the tank survivors at the three analysis points for the 
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Table 1 

COMPARISON OF SURVIVING FORCES 

Run Number 7306 

Short-Range Defense 

Initial Numbers 

16 Blue Tanks 

6 Blue Short-Range Missiles 

6 Blue APQ 

3 Blue liong-Range Missiles 

MO  Red Tanks 

0 Red Missiles 

12 Red APC 

ANALYSIS 
POINT 

Low 

(70%) 

Prin- 
cipal 

(50%) 

High 

(22%) 

WEAPON 
TATAWS 
SIMULATION TIME  ANALYTIC 

Blue Tanks 
Blue SR Missiles 
Blue APC 
Blue LR Missiles 
Red Tanks 
Red Missiles 
Red APC 

Blue Tanks 
Blue SR Missiles 
Blue APC 
Blue LR Missiles 
Red Tanks 
Red Missiles 
Red APC 

Blue Tanks 
Blue SR Missiles 
Blue APC 
Blue LR Missiles 
Red Tanks 
Red Missiles 
Red APC . 

13.90 
5.10 
5.93 
2.73 

28.00 

11.70 

12.23 
4.57 
5.73 
2.27 

20.00 

10.33 

9.HO 
2.97 
5.20 
2.00 
8.90 

«».27 

2U2 

263 

.15.1/13.9 
6.0" 
6.0"" 
3.0" 

ifr.il/fii.tl 

11.0/10.6 

12.6 
6.0 
6.0' 
3.0' 

19.2 

327 

10.2 

10.0 
5.8 
6.0 
2.9 
7.2 

7.0 

71 

TIME 

2M0/250 

260 

290 
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three long-range attack engagements.  The Monte Carlo simu- 

lation results for runs 7355 were not provided by the govern- 

ment for comparison.  The larger differences in tank sur- 

vivors in runs 7105 and 7106 were attributed to the fact that 

the input vulnerability data for the Blue tank on the Red 

missile used in the simulation run was approximately twice 

that used in the analytic model run. 
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The overall structure of the differential model of 

combat was presented in the preceding part of this report. 

A basic input to this model is the attrition rate, which is 

the rate at which a firing weapon system can destroy live 

targets when it is firing at them. This part of the report 

describes methods that have been developed to predict the 

attrition rate for a spectrum of weapon systems. 

Chapter 1 describes our concept of the attrition rate. 

Rationale for employing the differential equation structure 

of combat (given in Part A) with this concept of the attri- 

tion rate, and an operational definition of the attrition 

rate for use in this context, is presented.  Chapters 2, 3, 

and H contain descriptions of alternative developments of 

attrition-rate prediction models for various types of weapon 

systems.  The attrition-rate models are developed using 

different mathematical approaches. Our intent is pedagog- 

ical, in that we hope it will acquaint the user with ap- 

proaches to modify or develop attrition rates for systems 

other than those modeled in the research program. 

ftwrtii! page Matt 



• uw'i4i«.WIUWMW»IH^ '••"•"» w-^ •»-- •«*>• -UM »«>•»HW «wwWMHilPM^'WP158"1 

:l 
D 
D 
11 

Q 

ii 

0 
0 

I 

Chapter 1 

INTRODUCTION 

Seth Bonder and Robert Farrell 

1.1     Conaept of the Attrition Rate 

The attrition rate for individual u-dpon systems is 

assumed to be dependent on a multitude of physical parameters 

of a weapon system which describe its capabilities in such 

areas as acquisition, firing accuracy, delivery rate, and 

Li warhead lethality. Experience with existing systems suggests 

that these characteristics are dependent on the range to a 

target and are stochastic in nature.  That is, the attrition 

rate is functionally dependent on the range between combatants 

and, for any specified range, is described by a probability 

distribution.  In the vernacular of the mathematician, the 

attrition rate may be viewed as a nonstationary stochastic 

process when forces employ mobile weapons.  This is shown 

in Figure 1, which depicts the two distinct variations in the 

attrition rate for a single weapon system type against one 

target type: (a) the stochastic variation at a specific range, 

which is described by the conditional probability distribution 

f(a|r), and (b) the variation in some function of the attrition- 

rate random variable with range, which is called the attrition- 

rate function, o(r). 

  Preciüm ME« ••«* 
For clarity of discussion, variations in the attrition rate due 
to changes in target posture, environmental effect, etc., 

LI which can be included in the model, are not presented. 

D 
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f(a|r) 

Plo.r] 

Range r 

Figure 1   The Attrition-Rate Process 

The fact that armed conflict is stochastic is well rec- 

ognized and is one of the reasons for conceptualizing the 

attrition rate itself as a nonstationary stochastic process, 

P[a,r].  Assuming the process P[avr] could be predicted, 

one would like to incorporate the range and chance varia- 

tions of the attrition rate explicitly into a model of 

combat among heterogeneous forces.  The rate concept sug- 

gested that such a model would be either a differential 

equation (continuous-state variables) or a difference-dif- 

ferential equation (discrete-state variables) structure in 

which the relevant coefficients were nonstationary stochastic 

processes, i.e., the pto^. ,x»D and P[$.^,r] for all weapon- 

target group pairs.  Initial study strongly indicated that, 
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LH  the foreseeable future, there was little hope of solving 

either of these structures even for simplified situations. A 

research decision was made to suppress the chance variation in 

the attrition rate and concentrate on structures of combat 

which explicitly involved the range variation in the rate when 

mobile weapons are employed. 

Discrete-state stochastic process models were considered 

in which the transition rates are nonstationary, i.e., as vary- 

ing with time. The literature indicated that discrete-state 

stochastic process formulations of combat have been difficult 

to solve even when the process is considered to be Poisson 

(Lanchester type) with stationary transition mechanisms. The 

few solutions obtained with homogeneous forces have been of 

such complexity as to delimit their usefulness for analysis 

purposes (Dolansk^, 1964; Clark, 1968). Accordingly, it was 

felt that useful solutions for general discrete-state stochastic 

process formulations with nonstationary transition mechanisms 

could not be obtained in the near future. 

Although the appropriate long-range objective is to de- 

velop stochastic formulations of heterogeneous-force armed com- 

bat such as those noted above, we felt that a more reasonable 

intermediate objective would be the development of determin- 

istic formulations, and solutions, which included the non- 

stationary aspects of the attrition rate at the expense of 

f ! 
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explicit consideration of its stochastic elements. Accord- 

ingly, the coupled sets of differential equations described 

in Part A of this report (equations 1 and 2), were chosen as 

the mathematical structure to model the combat activity. 

The nonstationary aspect of the attrition rates is included 

in the formulation as the variable coefficients in the dif- 

ferential equations, where the variable coefficients are ap- 

propriately defined as the attrition-rate function, a(r). 

Thus, there is one value of the attrition rate (for any fir- 

ing weapon on a specific target group) at each range. 

1.2    Definition of the Average Attrition Rate 

Initially, the at rition rate at each range was defined 

to be the arithmetic mean or expected value of the attrition- 

rate random variable.  Barfoot (1969) suggested that a more 

appropriate definition of the attrition rate, when a single 

value is used at a specific range, is the harmonic mian of 

the attrition-rate random variable.  The appropriateness of 

this definition for use in the differential equation model 

of combat is seen below. 

Consider a homogeneous-force battle in which the initial 

numbers of Blue (M) and Red (N) forces are sufficiently large 

so that neither is totally annihilated. Lach Blue weapon 

system is engaged in a renewal process of attriting targets, 

i.e., the times between kills are independent and identically 
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distributed random variables. From Blackwell*s theorem 

(Parzen, 1962, p. 183), 

P dt 

o 
il 

Lim PrCrenewal in (t, t+ dt)J = — 
t+« " 

where 

u = the expected interrenewal time. 

Therefore, the expected number of Red kills in (t, t + dt) is 

ECnumber of Red kills in (t, t + dt)] = 2ä£ , (1) 

The differential equation homogeneous~force model of combat 

states that 

o 
E 

dn • ECnumber of Red kills in (t,t + dt)] 

= amdt. 
(2) 

Comparison of (1) and (2) suggests that a be defined as 1/u . 

More generally, the definition of the attrition rate to use 

(for a specific range) in the differential equation structure 

of heterogeneous-force comoat is 

def 
a., (at range r) = ELt^|rJ , (3) 

o 
ü 

where 

ECT.^r] the expected time for a single Blue 

system of the i  group to destroy a 

passive jth group Red target, given the 

target is at range r. 
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This definition for an average value of the attrition rate at      j 

range r is equivalent to the harmonic mean of the attrition 

rate when it is viewed as a random variable at range r. This 

definition also leads naturally to defining the range variation     m 

of the attrition rate as the variation in the reciprocal of 

ElT^.|r3 as the range to the target changes.  The range varia- 

tion is called the attrition-rat* function  and is denoted by 
n 

<*£. (r), as used in the differential equation structure of combat.   ]; 

I 
1.3    Taxonomy of Weapon Systeme for Attrttton-Rate Models 

Because of the definition of the attrition rate given by      \ 

(3), research on attrition rates has been concerned primarily 

with the development of time-to-kill  probability distributions 

and their expected values for a spectrum of weapon systems.  To 

ensure that the attrition rates developed are general, a taxon- 

omy of weapons systems that is not dependent on physical hard- 

ware characteristics (such as caliber) was developed.  Rather, 

the taxonomy reflects characteristics of weapons systems that       -• 

would affect the methods used in predicting the attrition rates.    7t 

The taxonomy is shown in Figure 2. Weapon systems are first 

classified by their lethality characteristics as having either 

impact-to-kill mechanisms or area-lethality effects. Within each 

of these categories, we have found it useful to further classify 

weapon systems on the basis of their methods of using firing in- 

formation to control the system aim point and their delivery 

ii 

o 
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LETHALITY MECHANISM: 

1. IMPACT 

2. AREA 

FIRE DOCTRINE: 

1. REPEATED SINGLE SHOT: 

*A) WITHOUT FEEDBACK CONTROL DF AIM POINT 

*B) WITH FEEDBACK ON IMMEDIATELY PRECEDING 

ROUND (MARKOV FIRE) 

c) KITH COMPLEX FEEDBACK 

2. BURST FIRE: 

*A) WITHOUT AIM CHANGE OR DRIFT IN OR BETWEEN BURSTS 

*B) WITH AIM DRIFT IN BURSTS, AIM REFIXED TO ORIGI- 

NAL AIM POINT FOR EACH BURST 

c) WITH AIM DRIFT, RE-AIM BETWEEN BURSTS 

3. MULTIPLE TUBE FIRING: FEEDBACK SITUATIONS QA, P, C) 

*A) SALVO OR VOLLEY 

4 MIXED MODE FIRING: 

A) ADJUSTMENT FOLLOWED BY MULTIPLE TUBE FIRE 

*B) ADJUSTMENT FOLLOWED BY BURST FIRE 

# INDICATES THAT ANALYSIS OF THIS CATEGORY HAS BEEN PERFORMS. 

Figure 2 Weapon System Classification for the Development 
of Attrition Rates 

D 
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characteristics, i.e., the firing doctrine employed. 

The first cases analyzed involved single-tube firings in 

which launch of a projectile occurred only after the observation 

of the effects of the preceding round. These Are called "repeated 

single-shot" doctrines in our schema, and are sometimes called 

"shoot-look-shoot" doctrines by other analysts. Analyses have been 

undertaken of two subclasses:  (a) those in which no use is made 

of information obtained from observations and (b) those in which 

the observations are treated distinctly depending on whether they 

are a hit or a miss, leading to different types of correction in 

aim point for these two cases. This subclass is called "Markov 

fire." Other more complex feedback situations have not been 

analyzed. 

The more complex doctrines involving "multiple-tube firings" 

and "burst fire," have been analyzed separately. These are clas- 

ses of systems for which the projectiles may be launched before 

observation of previous round effects.  Burst-fire cases analyzed 

include those in which rounds are all identical with respect to 

accuracy (no drifting or controlled alteration of the aim point) 

and those in which the rounds within a burst vary, but the bursts 

are resighted to the same aim point. All present analyses have 

been based on fixed-length bursts.  The complex case in which 

bursts are re-aimed on the basis of observation has not been 

analyzed.  Preliminary analyses have been conducted of multiple-   J] 

tube firing cases, and it has been determined that the attrition   ^ 

rate for both volley and salvo fire may be represented by the same *^ 

formulae.  The mixed-mode firing doctrine in which a period of 

i > 

l 
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of single-shot fire is followed by burst fire has also been 

analyzed. 

It is important to note that this classification scheme 

of weapon systems is not complete and that even in the areas 

where analysis has been conducted, the formulae developed do 

not necessarily represent all weapons systems in the appropriate 

category. Use of the attrition-rate formulae presented should 

be preceded by a careful comparison of the assumptions used 

in developing them with the lethality characteristics and firing 

doctrine of the weapon system being considered. 

The succeeding chapters of this part of the report de- 

scribe the detailed development of attrition-rate models for the 

different classes of weapon systems. The developments are orga- 

nized by the mathematical assumptions and techniques used, 

and include multiple approaches in obtaining the same and 

similar results in some of the cases. Our intent is peda- 

gogical, in that we hope it will acquaint the user with approaches 

to modify or develop attrition rates for systems other than 

those modeled in the research program. 

Chapter 2 utilizes detailed probability analyses to deter- 

mine the complete probability distribution of the time-to- 

kill random variable under the following assumptions: 

(a) The systems are impact-lethality, repeated single- 

shot systems of class 1A or IB, 

. 
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(b) The probability of kill given an impact is identical 

for every round fired, 

(c) The time preceding the firing of the first round is 

not random, and the conditional times to fire a 

round after a hit and after a miss are not random, 

(d) The probability that a round fired after a preceding 

hit or miss results in a hit or a miss is not in- 

fluenced by the knowledge of other history of the 

engagement (such as the number of rounds fired or 

the number of previous hits), 

(e) The engagement terminates immediately on a kill. 

This chapter also presents straightforward probability anal- 

yses of the expected time-to-kill in the impact-lethality burst- 

fire problem which do not involve calculations of the complete 

probability distributions. 

Chapter 3 presents an alternative mathematical methodology 

for the development of probability distributions and expected 

values of the time-to-kill variables m the repeated single- 

shot impact-fire case.  The method permits relaxation of as- 

sumptions (b) and (c) above, but involves the extensive use of 

Laplace transform analyses of random variables.  Thus it is 

somewhat more general, but also more mathematically difficult, 

than the methods of Chapter 2. 
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Chapter 4 presents a very general method of determining 

the expected time to kill a target for a broad class of weapon 

systems which includes the repeated single-shot impact-lethality 

category.  The methods used do not determine the full distri- 

bution of the time-to-kill random variable.  The methods, 

although based in the theory of Markov-renewal or semi-Markov 

processes, do not require detailed understanding of the theory 

in its application.  Only very general assumptions concerning 

the firing and lethality processes are required. 

Chapter 5 describes the development of attrition-rate 

models for area-lethality systems.  The methods are straight- 

forward detailed analyses of the process, similar in general 

philosophy to the burst-fire analyses of Chapter 2, but differing 

in techniques.  The analyses are based on previously documented 

models of t>e artillery fire process.  This chapter dees not 

specifically consider the kill rate in terms of the time-to-kill 

random variable. 

. 
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Chapter 2 

IMPACT-LETHALITY SYStfeljlS 
REPEATED SINGLE-SHOT, BURST, AND MIXEDfMODE FIRE DOCTRINE 

Seth Bonder 

This chapter presents the development of models to pre- 

dict the attrition rate for many of the weapons classified as 

impact-lethality systems.  Systems of this type aim at a point 

target and projectiles must impact upon the target to destroy 

it.  Methods are developed for repeated single-shot, burst, and 

mixed-mode single-shot Markov and burst-fire doctrines. The 

results are models for the probability density function and 

the expected value of the time-to-kill  random variable at 

a specific range to the target since, by definition, they are 

used directly to predict the attrition rate at a specific range. 

Although the conditioning on range is explicit in the basic 

definition of the attrition rate (see equation 3, Chaptt-1 1), 

the range notation is omitted in the remainder of this part 

of the report for clarity of development. For similar reasons, 

the i,j notation for weapon-target pairs is also omitted. 
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0 
0 
0 

2,1    Repeated Single-ehot, Markov Fire Doctrine 

Consider first the development of an attrition-rate model 

for repeated single-shot, Markov fire weapon systems. 

Exposition of the development proceeds as a straightforward 

analysis of the physical process.  Implicit in this type of 

development are several assumptions which are listed here as 

a convenient summary and reference.  These are 

(a) the systems are of the impact-lethality, repeated 

single-shot, Markov-fire class, 

(b) the probability of kill given an impact is identical 

for every round fired, 

(c) the time preceding the firing of the first round is 

not random, and the conditional times to fire a round 

after a hit and after a miss are not random, 

(d) the probability that a round fired after a pre- 

ceding hit or miss results in a hit or miss is not 

influenced by the knowledge of other history of the 

engagement (such as the number of rounds fired or 

the number of previous hits), 

(e) the engagement terminates immediately on a kill. 

A reasonable physical manifestation of the single-shot, 

Markov fire doctrine is given by a main tank gun whose firing 

"Part of the derivation in this section is given by Bonder 
(1967), but are repeated here for convenience and continuity 
of development. 

ö 
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process is said to vary from round to round as shown in Fig- 

ure 1.  Figure 1(a) shows the adjustment procedure following 

a hit on the first round which is to replace the crosshairs 

on the target—presumably the position of the crosshairs for 

the first round.  Figure Kb) depicts the "burst-on-target" 

adjustment doctrine following a miss on the first round. 

Succeeding adjustments, based on the result of the immediately 

preceding round, are made in a similar fashion until the target 

is defeated. The probability density function (pdf) of the time 

to accomplish this result is obtained by essentially modeling 

when struck by a projectile.  The particular effect of interest 

is the target's combat utility. When this combat utility is 

reduced to zero, the target no longer poses an active tactical 

threat and may be considered defeated or killed.  The definition 

of a defeated or killed target is, of course, dependent on the 

target's mission or role in combat.  For example, consider an 

armored tank which is frequently referred to as "mobile, 

The lethality definition is paraphrased from Zeller (1961). 

: 

D 
(i 

n 

li 
this adjustment process as it occurs, round by round. 

Since the objective of a weapon system is to defeat the      " 

enemy, we begin by defining lethality and its unit of measure- 

1 ment.  In brief, lethality refers to what happens to the target 
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protected firepower."  Some of the tankfs combat missions 

require primarily firepower, others require mobility, and 

still others require both firepower and mobility, and the 

definition of lethality must consider which of these are 

relevant in the context of a study. 

Lethality against a particular target is measured as 

the conditional probability of a kill, given the projectile 

hits the point target, and noted symbolically as either 

P(K|H) or Pj,.  This measure is dependent on the mechanical 

damage caused by perforating and/or striking the target, 

and the loss in combat utility resulting from this mechanical 

damage.  Procedures developed to predict this measure for 

different types of targets have been developed.  See, for 

example, Zeller (1961), Goulet (1963), Freedman (1965), and 

Meyer (1967). 

Another measure of lethality can be defined as "the number 

of hits, z, needed to defeat the target," Since we are con- 

cerned with destroying the target just once, this measure 

is directly related to the conditional kill probability by 

the geometric density function 

p(z) = (1 - PK)
Z_:L P K (1) 

7 

i 
T 
*» 

; 

The number of hits needed to defeat the target> z, is initially 

used as a parameter in subsequent developments of this chapter. 
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The number of hits required to effect a kill describes a 

weapon's lethality characteristics against particular targets. 

The weapon's accuracy capabilities are next considered by 

developing the distribution for the number of rounds fired 

(hits and misses) to defeat the target. 

Let 

P-, = first round hit probability, 

p s conditional probability of a hit given the 

preceding round fired missed the target, 

u = conditional probability of a hit given the 

preceding round fired hit the target, 

and consider the sequence of trials (rounds fired) connected 

in a regular Markov chain with transition probability matrix 

hit   miss 

0 < u < 1 

0 < p < 1 . 

ll-L   <- JUJ-OO 

P1 hit / u     1 - u\ 

(1 - P,) miss \ p     1 - p / 

It is assumed that p and u are defined only on the open 

interval (0,1).  We seek the pdf for the number of rounds, 

N, to obtain z hits if the sequence of firings ends with a 

hit.  This can occur in two mutually exclusive and 

U 
The procedure could be extended to remove this assumption 
that the firer recognizes when the target is defeated without 
technical difficulty but with increased complexity of 
discussion. 

... 
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ü 
collectively exhaustive ways. 

f(N|z) = f(N-H-H|z) + f(N-M-H|z) . (2) 

The first term on tnc right-hand side of (2) is the probability 

that the first and last rounds of the sequence result in hitc 

given that the z hits occur in N firings.  The second term is the 

probability that the first and last rounds of the sequence 

result in a miss and a hit, respectively, given that the 

z hits occur in N firings. 

To determine f(N-H'H|z) we consider the following combina- 

tion of firing results: 

In the first r. firings, the event hit occurs everytime; 

In the next S- firings, the event miss occurs everytime; 

In the next r2 firings, the event hit occurs everytime; 

In the next s„ firings, the event miss occurs everytime; 

In the next Sj^ firings, the event miss occurs everytime; 

In the last rk firings, the event hit occurs everytime, 

The joint occurrence of these events has the probability 

L 

I 

0 

! 
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r-,-1 Si"1  r9_1 s9-l     
r>-l 

P,u x (1 - u)(l - p) -1 pu z (1 - u)(l - p) *    p...pu * 

r,+r^+.. »i\-k ST+S0+...S, n-(k-l) 
= P.u X    c k (1 - u)k'lU - p) 1    2    k"1 P*'1- 

(3) 

Since there are a total of z hits and (N - z) misses, 

li 
Q 
0 

f j 

2 ri =z 

i=i 
and 

k-1 

i=l 

s. = N - z . 

Therefore> (3) becomes 

pnu
z-ku - vt'ki - p)"-*-**1/-1 

Accordingly, the probability of the outcome depends only 

on N, z, and k and not on the values of r^ and s..  The number 

of hits, z, can be expressed as a sum of k positive integers 

(the r.) in (£'•]] ways and the number of misses, (N - z), as 

a sum of (k - 1) positive integers (the s.) in ( ^_ ~^  J ways. 

Therefore, the probability that it takes N firings to obtain 

z hits, the first and last being hits with probability P, and 

p or u, respectively—where the hits occur in k groups and the 

misses in (k - 1) groups--is 

Proof of this assertion is given in Appendix B, 2, 1. 
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••(-)(»)• 

z-ku - u^-y-^i - t)
H-z-k+i 

:
' 
• 

The outcome can occur for all values of k such that (1 < k < z). 

Accordingly, 

Pxu 
z-1 

f(N-H-H|z) ^ (P 

c 

' w- 
N = z 

z-kd - ^-VH^-^n - P)N—k+1 

N > z  (5) 

(N-z-lJ 

* 

since P^f* | = ° whön k s * and N * z' 

By an analogous derivation, it can be shown that 

i 

f(N-r-H|z) = (1 - vtB" 
k*l>  ' 

|N-Z-I\ 
\k-l/ ^•^VfÄla-p^ 
for N > z . (6) ^ 

-. 

Substituting (5) and (5) into (2) completes the derivation for 

PLu 
z-1 N = z 

f(N|z) = ( E/^-lN z-kn  nvk-l>l/N-2-l\ N-z-k+l (7) 

• 

I 

N > z , 
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. 

where Q1  = (1 - P.) and q = (1 - p).  The reader is reminded 

that equation 7 is a conditional distribution which is dependent 

on the integer z. 

The characteristic function of (7) is defined as 

•H|l(s> = E[eisN] = 2 eisN f(N|z) , (8) 

N=0 

where s is a dummy variable and i = W-l 

It is shown in Appendix B, 2, 2 that 

is 

•N|z
(s) = e    |P1+ — . xs l - qe 

u + ii--_ä>*e IS 

1 - qe is 

z-1 

(9) 
Setting s = 0 in (9) , 

*N|z(0> f(lfli) = 1 , 

N=0 

proves that (7) is, in fact, a probability density function 

The expected value of N is obtained from (9) as 

E[N|2] . ilMz 
1  ds s = 0 

= z • 
(1 " Pl} + P - u)(z - 1) 

(1C) 
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10.2-

The de!1sity function fCN!z) for• the number of rounds that 
r r .. 

m•1:.~ t bP f iced to destroy a particular target is dependent on the 

le~h.1lity and accuracy capabilities of the weapon system. Two 
t 

n ti"1E'Y' irnportan: weapon characteristics remain to be considered-- f 

:h0 system's acquisition capabilities and its rate of fire. We 

co~sidL;' these characteristics in a manner such ~hat the acqui-

3 it i()n and firing processes are serial·. That is, targets are 

·!t~Str·t)Ved by sequentially acquiring a target-, attriting it by 

~ire, dcquiring a new target, attriting it, acquiring a new 

~3rggt, etc. This is in contrast to parallel acquisition and 

f i r·ing pt·uccsses .in which new targets may be acquired while a 

previou£ly acquired one is being attrited. 

·.·i•? include t:he t: irning characteristics of-acquisition and 

!l.t'lng by dt~fining 

'ta 
~ the time to acquire targets, 

t 1 = time to fire the first round, 

= tirr:e to !ire a round given the preceding round 

was a h:i_ t, 

a round g1ven the preceding round 

time, 

sequence of events from target 

;.• .~_:·,c• ion. Tl.o..! sr:·c-1uence begins with detection 

: :--.~' u;:i ·:s ~c occu!". The first round ie then fired 

BEST AVAILABLE COPY 

'' . ' 
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first round misses, the next round.will arrive (x + x~) time m   r 

units after the first. If the first round hits the target, and 

more than one hit is required (z > 1), the next round will 

arrive (x, + x_) time units later.  The sequence of firing 

after hits and misses is continued until the final hit which 

destroys the target is obtained.  This description is consistent 

with our single-shot Markov firing doctrine in which the result 

of the previous round is observed before the next one is fired. 

In this process, rounds will be fired after each of (z - 1) hits 

and (N - z) misses. Accordingly, the time to defeat a target 

may be written as 

J  
T = xa + (xx * xf) + (xh + xf)(z - 1) + (xm + xf)(N - z) 

= ci + C2N » 
(11) 

where 

c, = x  + x - x  + (x - x )z 
lain    h   m (12) 

c0   = xm + X. . 2   m   f (13) 

Equation 11 defines T as a linear function of the discrete 

random variable N, and establishes a one-to-one transformation 

between their respective sample spaces. The density function 

of T is readily obtained from (7) by the change of variables 

technique for discrete variables (Hogg and Craig, 19 59) as 



lOH 

Pxu 
z-1 T = cx + c2z 

f(T|z) = / D Wz-A »->*i    xk-l k-l\L 2 J   /\w2/ 

k=2 x 

k=l x 

T > c, + c2z 

(14) 

The characteristic function of T, <l>T|2(s), is obtained directly 

from (9) by employing the following property of characteristic 

functions: 

*T|zCs)=E[e^] 

[is(c  +c9N)l 

I 
c, is   T isc^N"] 

"e    Et      J 
c  is 

= e  '    »Nlz(o2s) 

=  e 
i ;(c,+c2z) 

V 
Qxpe 

ic s 

ic9s 
(1   -   qe ) 

u  •   (1   -  u)Pf 
i  -  qe 

ic2s 

ic2s 

z-1 

.  (15) 

r 
F 
I 
I 
I 
I 

T 

i ! 
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The expected value of T can be obtained from (15), or, more 

directly, by employing the linear property of the expected- 

value operator with (11). Accordingly, 

:! 

E[T|z] = c1 + c2E[N|zJ 

. « f(1 " Pl} + (z - 1)(1 - u) ,  1 s ci + c2[—p— + 3 + ZJ ' 
(16) 

The characteristic function, <f>T|z(s), and the expected time 

to destroy a target, E[T|z], are conditioned on the integer- 

valued lethality variable z, which is the number of hits required 

to destroy the target.  This conditioning is removed and the 

continuous lethality parameter P„ (the conditional probability 

of destroying the target given it is hit by a projectile) intro- 

duced by the operatipns 

*T<s)   = ]£ •Tiz(s)p(z) 
z=l 

• 

PKe 
i8lVTi,1f) 

ISC 

pl+ 

QnPe 
ISC, 

1 - qe 

1 -   (1 -  PK)e 
is(Th+Tf> 

u + a - ü2g 
ISC, 

ISC 
1  -  qe 

(17) 
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where p(z) is given by equation 1 and 

OP 

ECT] = 2^ E[T|zjp(z) 

f 
Z = l 

: 

Ta + Tl " Th + K^'Mfv8-' >]• 
(18) 

The characteristic function given by (17) is obtained by more general 

methods in Chapter 3 of this part of the report. The one-to-one 

correspondence between probability density and characteristic 

functions facilitates obtaining the unconditioned pdf of the random 

variable T from (17). 

By the definition established in Chapter 1, Section 1.2, the 

reciprocal of (18) is the attrition rate for impact-lethality 

systems that employ the repeated single-shot, Markov firing 

doctrine.  Special cases of (18) include 

(a) Equal Succeeding Round Firing Times (T. = T = T ) 

E[T3   =   T      +   T,    -   T      +    (T      +   T-) a        Is s r 

[p +   (1 -  u)   +  PK(u -  P1)1 
(19) 

i 
l 

(b)     Independent Fire (P,   = p s u = 0;  T.   * T    =  x)  i x       r n m s 

Ts   +   Tf (20) 
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(c) Independent Fire, Equal Firing Times 

(P1 = p = u = 6; XX  = Th = Tm = Ts) 

Ts + Tf 
ECT] = Ta + -W K 

(21) 

These special cases reflect the fact that the attrition rate 

for other impact-lethality, repeated sinele-shot systems are 

given by equation 18.  For example, equation 20 may be used 

to determine the attrition rate for guided-missile systems.  In 

such systems the accuracy capability of each round in a sequence 

is essentially the same but the timing for the first round is 

different from all succeeding ones. 

: i 
2.2    Burst and Mixed-Mode Firing Dootvine 

Consider next, systems that employ impact-lethality 

projectiles and possess the capability of burst fire. 

Systems of this type include the vehicle rapid-fire weapon 

system (VRFWS), and secondary armament on a tank.  These 

systems can employ a number of reasonable fire doctrines 

such as 

(a) repeated single-shot independent fire, 

(b) repeated single-shot Markov fire, 
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1 
(c) burst fire, and 

(d) single-shot Markov fire until the first hit is 

obtained and then immediately switch to burst 

fire. 

Doctrines (a) and (b) are single-shot fire doctrines, and 

accordingly, the attrition rate for these systems is obtained 

from equation 18 and special cases of it. The attrition rate 

for doctrine (d) is obtained by considering the single-shot 

and burst portions as two separate processes: 

(1) single shot until the first hit is obtained, and 

(2) burst fire until an additional (z - 1) hits are obtained 

to defeat the target. 

Let 

n,  = the number of rounds fired to get the first hit, 

n2 =  the number of rounds fired to get (z - 1) additional 

hits 

be two random variables with expected values E(r.^|z) and 

E(n2Iz) and density functions f.Cn^lz) and f2Cn2|z), respec- 

tively.  The distribution f^Cn^Jz) is a special case of 

equation 7 <page 100), in which z • 1.  Accordingly, E(n.|z) is 

given by equation 10 with z * 1. 

1 " Pl 
E(n, z) = 1 + —-  , (22) 
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where 

v = conditional probability of a hit following a 

miss but preceding the first hit 

replaces the symbol p.  Additionally, it is recognized that 

the distribution for the burst-fire phase, f?(n|z) is, except 

for a slight shifting of the axis, equivalent to equation 7 

with the initial state probability P, = 1.0.  The shifting of 

the distribution is due to the fact that the gunner, not waiting 

to observe the result of each round before firing the next one, 

will fire a small number of rounds while the z  and last re- 

quired hit is in flight to the target.  Thus, from equation 10 

(z - 1K1 - p) E(n2|z) = z + ~ «ä ^-  • c (23) 

where 

D = 

c = 

re-hitting probability (assumes the hit 

probability of each round in a burst is 

the same whether it follows a hit or a miss), 

number of rounds fired while the rour.^ 
th which is to become the z 

s tw-1 
hit is in flight, 

[x] is read as the maximum integer in x.  The symbol T. is 
is defined on page 111. 
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E(n|z) = E(n1|z) + E(n2|z) - 1 

(1 - P ) 
• z • l—iL. a - »a - p) ##< 

(25) 

Define 

T,  =  time required to obtain the first hit, 

time required to defeat the target (obtain 

a total of z hits). 

Analogous to the development of equation 11, 

Tl = Ta + <T1 + Tf) + <Tm + Tf> (nl " n   <26> 

The total number of rounds fired to defeat the target is 

n = nl * n2 " l* (2t4)       T 

where the minut, one accounts for the fact that the first hit 

was counted in both processes.  Since the expected value is 

a linear operator 

* 

i 

i 
i 

n        ~        exilic    1C4UX1 cu    \.\J    uuiaiii    \ c    —    JL 1    nuuinujiai 

hits, 

T0  =  time required to obtain (z - 1) additional 
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and 

for z = 1 

T. + T^ + (z - 2)TK + C(n9 - c) - Z]TK for z > 1 

for z = 1 

(27) 

xh • Tf + (n2 - c - 2)Tb for z > 1, 

where 

time to fire the first round in the burst 

process after obtaining the first hit in 

the single-shot process, 

average time between rounds during the burst 

firing mode.  The averaging is performed over 

the time between individual rounds within a 

burst and the required cooling time between 

bursts. 

Equation 27 is obtained by the following rationale.  The 

gunner senses the hit and fires the first burst-mode round 

in T. seconds.  That round arrives at the target if seconds 

later.  All subsequent rounds arrive in a string at the target 

in intervals of T. seconds.  Excluding the c rounds fired after 

the round which results in the z  hit (since these additional 

rounds do not affect the time to achieve z hits or the time to 

defeat the target), rounds are fired after (z - 2) hits after 



112 

the  first  and  [(n.  -  c)  -  z] misses.     Thus,the associated 

expected values  are 

f 

: 

m 

E(Tn|z)   =  T     •  T,   -  T     +   (T     +  Tf)E(n,|a) 11 aim mix' (28) 

and 

E(T2|z)   = 

for z =  1 

Th +  Tf  "   (c  *   2)Tb *  Tb E(n2lz) for  z  >   1. 
(2°) 

Noting that the overlap of one round between the two firing 

processes does not exist in the firing times 

T  =  T1  +  T2 (30) 

and 

where 

E(T|z)   =  E(T1|z)  • E(T2|z) 

•{ 
c3  +  cl+E(n,|z) 

c3 •  CjjECnJi)   •  c5  +  tbE(n2|z) 

T       *    T,     -    T aim 

Tm+   Tf 

xh  •  Tf  -   (c  +   2)xb. 

7.    =    1 

Z    >    1 

(31) 
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Removing the conditioning on the lethality variable 2 by 

w 

E(T) = ^ E(T|z)p(z) (32) 

z=l 

and employing (22) and (23) 

E[T] = Ta + Tl + Tf + <*B 
+ TfT^7 

+ (1 - *A T,+ T^ + h *f      pP K 
(1 - pP 

(33) 

K>]  • 

The reciprocal of equation 33 is the attrition rate for a 

weapon system that employs mixed single-shot and burst- 

fire doctrines, and impact-lethality projectiles. 

Doctrine (c), the pure burst firing mode, may be viewed 

as a special case of the nuxed firing doctrine in which 

(a) the time to fire every round except the 

first is T. , 

(b) the probability v = p •= re-hitting probability, 

and 

(c) only the flight time of one round need be 

considered. 

The&e differences reduce equation 3 3 to 

E[T]    =    T       •    T a 

ri - PK(Pi - p)i 
1 + Tf - Tb + Tb [ pir J • 

(3U) 
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If all rounds in the burst, including the first, are indepen- 

dently fired, (P-^ • p), equation 34 reduces to 

E[T]   =    Ta   •   TX   •   Tf   + 
I"1   -   PPKl 

Tb[l^     j   ' 
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Appendix B, 2, 1 

NUMBER OF WAYS THAT K GROUPS OF HITS CAN SUM TO Z 

Seth Bonder 

p 
We seek to p?ove that the number of ways that k groups 

/z-l\ 
of hits can sum to z is Ifc-i] •  Let the k groups of hits be 

represented by k + 1 bars.  Consider initially,.the problem 

of dropping z hits into the k groups as shown below with an x 

representing a hit. 

group 

\ xx | x 

1  2 

| XXX 

3  4 

|    | XX £ 
k-1 k 

The first and last bars are fixed. Therefore, this problem is 

one of determining the number of ways that, from z + k - 1 items 

(hits and bars), you can draw z hits. Equivalently, the number 

of ways that z hits can be arranged in z • k - 1 items, where 

z and k * 1 of these are different, is 

• 

hi • fax) • en 

This problem permits groups to be empty.  For situations with at 

least one hit in each group start by dropping one hit in each, 

i.e., subtract k from z in (1). This produces the desired result 

that the number of ways that k groups of hits can sum to z 
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Appendix B, 2, 2 

CHARACTERISTIC FUNCTION FOR f(N|z) 

Seth Bonder 

By definition, the characteristic function 

•NU(8)  « E r i.NJ 

--  £ eisN f(N|z) , (1) 

•N|z<8) = A • B  , (2) 

where 

A = P1 je^u
2"1 

where s is a dummy variable and i = *T-i. Substituting f(N|z) 
u 

from the main text into equation (1) , 

E 
I 
I 
I 

• t t *""(£) »i-k"-«>k-v-1 (N-.TJ «--""I T 
N=z+1 k=2 /   4 

(3) 
and 

BM.E i^i^-w-vft;1) ^ 
(4) 
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Reversing the order of summation and expanding (3) 

A = P     / e18z uz"A 

^«-»tt-fc    f.    .*"»( 
N=z+1 U 

(:)^^|;iT)^ 

V-V N=z+1 

-"     .W*"""1)   qN"2z+M.      (5. 
z-2 

By letting y = (k-2)5 we note that the sum in the k  term of 

equation 5 may be written 

H.    V    .u» (»-',,»-^.1 
N=z+1 

or 
00 

N-z-1 

N=z+l+y 
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since} a 1= 0 whenever b > a.  Expanding (6)  and recalling that   I 

c .  is(z+l+y) 
k 

Since 

tfp-H'rp-y  
• 

qe18| -   |q| |e18| = q < 1, : 

the series in the bracket of equation 7 is a binomial series 

of the form (l-x)"n. Accordingly, equation 7 may be written 

is(z+l+y) 

(l-qeiS)y+1 

is(z+k-l) 

(l-qe18)*-1 

Substituting equation 8 into equation 5, term by term, 

A =  Px   eisz u2-1 

(8) 

i 
i 
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(?) - +1   I "*-2(l-u>p eis(z+1)(l-qeis)-1 

A 

\t)   uZ"3M-u)2p2eis(z*2)(l.qis) -2 

. 

. 

V"j ci-tt>*'S,"V><2l"x)u-««1V<*1 

I 

eis2pi £ / -1 

y=0 

z-l-y (l-u)pe is 

1-qe is 
(9) 

and 

A = elszP. u * d-u)pei8 

l-qeis 

z-1 

(10) 

• • 
since the sum in equation 9 is a binomial expansion. 

By a derivation analogous to equations 5 through 10, 

it can be shown that 

: 

B = 
ei5(2+1)QlP 

(1 - qels) 
u +  <*-"> pe. 

is 

1-qe is 

z-1 

(11) 
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Substituting equation 10 and equation 11 into equation 2. 

the characteristic function 

f 
I I 

•N|z<»)  -- e 1SZ 
pl4 

QvPe 
is   -» 

1-qe is 

I 

u +  (1"u)^e 

l-qe1S 

is 2-1 

(12) 

:   i 

. . 

: 

.» 

•• 
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Chapter 3 

IMPACT-LETHALITY SYSTEMS, REPEATED SINGLE-SHOT FIRE 
DOCTRINE, TRANSFORM APPROACH 

Stephen Kimbleton 

The previous chapter presented methods of developing 

attrition-rate prediction models for impact-lethality systems. 

In this chapter we present an alternate approach to developing 

the time-to-kill probability distribution for systems of this 

type. This method, based on the use of Laplace transform 

techniques, provides another viewpoint of the process and can 

be readily employed to model systems in which the probabilistic 

character of the process timing (acquisition, firing, etc.) 

is significant. 

Consider the Markov firing doctrine described in Section 

2.1.  Although the individual sequence of hits and misses forms 

a Markov chain, there is a related sequence of independent, 

identically distributed random vartibles which is more useful 

in the present development.  For an irreducible, positive, 

recurrent Markov chain, the number of transitions S,,S2,... 

between entries into a given state forms a sequence of inde- 

pendent random variables and, after the first entrance, the 

random variables are also identically distributed (Parzen, 

1962, p.266).  Employing the same notation used in Chapter 2, 

we observe that 

PCSX = 1] = Pi 
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and for r > 2 , 

i 

r-2 P[S1 = r] = (1 - P1)(l - p>* *p . 

Similarly, for j > 2, 

PCS. = 1] = u  , 

and for r > 2, 

PCS. = r] = (1 - u)(l - p)r"2p 

n 
I 

- 

Using these observations and proceeding via straightforward 

calculations, it is easy to show that 

1 " Pl E[SX] = 1 •  g    , 

ECS.] = 1 • ±-y±    , 

(1) i 

VARCSJ   *  Px  •  (1 -  P1)C2p"2  +  p"1  +  1]   -  ECSX
2]   , 

VARCS.3   «  u +   (1 -  u)C2p"2  +  p"1  +  1]  -  ECS.2] 

(2) 

for  j   >   2, 

*• 

0 

n 
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and 

-e Qip e 

Ve) = pie +r re 1 J. - qe (3) 

-e p(l - u)e -29 

Ms (6) « ue 
v + a    » 

j 1 - qe 

a 
0 

where Q, = 1 - P,, q = 1 - p, and ^„(9) is the Laplace-Stieltjes 

transform of the random variable X evaluated at 9. Using the 

preceding results, the central limit theory of renewal theory 

may be used to determine the number of rounds that must be 

fired to obtain j hits for j reasonably large.  For j small, the 

e; let distribution of the number of rounds may be obtained by 

brute force calculation  while bounds on this distribution may 

be obtained through the use of Tchebychefffs inequality. 

If N denotes the round on which the kill was obtained 

and z denoted the number of the hit on which the kill was 

obtained, it is seen that 

i 

def 
N = ST + ... + S, 1        z j=l : 

_ 
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As the random variables z and S. may be assumed independent 

for j > 1, it follows from a well-known theorem on random 

sums of random variables that (Feller» 1968, p. 287) 

MM(0) = Mc (Ö)G^ ,(MC(6)) , (4) 
14 O,      Z-J.   o 

where G  i(y) is the probability generating function of the 
^ *• X 

random variable z - 1 with diurjay variable y, and S is a random 

variable having the distribution of the random variables S. 

for j > 2.  Since the conditional kill probability, P~, is 

corstant for the specific case under consideration, z - 1 is 

geometrically distributed over the integers > 0 and 

S-i'»» • i - ii - n. 

i 

] 

I 

I 

Observe that until this point in the argument the explicit 

form of z - 1 has not been used, and, indeed, (4) is valid as long 

is z - 1 is a non-negative integer-valued random variable. 

Substituting in (4), 

PKMSi(8) 

MN(e) = 1 - (1 - PK)HS(6) • (s) 

.. 

-• 

i. ; 
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P^e"0  +  [PKQ - PKQq -  P.,Piq]e~26 

M„(«) =  El * -| *L2  4N 
1 -  [q + u(l - PK>3e      +  [uq(l - PK>  + p(l - u)]e 

r^F 

Hence, 

E[N] = ECS 
.' • fr*) 

E[S] 

(6) 

(7) 

VARCN] = ECS-,2] + \    p 
Kj ECS2] 

K 

]ECS] 

E2CS] - E2CN] . 

(8) 

Since ECS,], ECS], ECS,*], ECS ] have or can be expressed in 

terms of PK, P,, u, p, it follows that ECN] and VARCN] may be 

so expressed by direct substitution. 

• 
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In general, it is difficult to obtain the underlying j 

probability distribution given its probability generating 

function. However, (6) is of the form £ 

Bie"
9 • Cie"

20 

A2 + B2e"
8 + C2tT

29 

and since this is the Laplace-Stieltjes transform of a posi- 

tive integer-valued random variable, it follows that this 

expression also has the form 

t -ne 
Pne   • • ? 

n=l S 

where p = P[N = n]. That is» 

Bie"
e + Cie-

2e = (A2 • B2e"
e • C2e-

26) 2* pne~
ne . 

Upon equating coefficients, and observing that A2 * 1, one 

obtains 

pis Bi 

p2 * C2 - BlBz 
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and for n > 3, p satisfies the difference equation 

= 0 . Pn 
+ B2pn-1 + C2Pn-2 " 

By a well-known theorem on homogeneous second-order difference 

equations (Goldberg, 1958, p. 141), it follows that if A, , *2 
2 

are real roots of the quadratic equation A  + B«A + C2 = 0, 

then 

Pn = Blxn • e2x«   , 

where 3^ and 3« are uniquely determined by the requirement 

that they satisfy 

pl = ^1*1 + ^2*2 ' 

2     2 
p2 = ^1*1 + ß2A2 * 

If, however, A,, A« are conjugate complex roots, then 

Pn = Yrncos(n6 + 3) , 
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where A, and A« have the form r(cos8 + i sin8) and y» & 

are, for Y >0 and 0 £ 0 < 2TT, uniquely determined by the 

requirement | 

p, = yr cos(8 +3) , 

2 
p0 = yr cos(28 + $). 

Finally, ifA,=A2=A, then 

Pn = (ßx + 32n)X
n « 

T  = time to acquire target, 
a 

x1 = time to fire first round, 

T. = time to fire a round given the preceding round 
was a hit, 

m = time to fire a round given the preceding round 
was a miss, 

Tf = projectile flight time. 

r 
i 

i 
where &,, $2 are again determined from p,, pj.  Inspection I 

of (6) reveals that all of the preceding cases are possible. 

It is relatively easy to solve the above difference equations 

through the use of standard computational methods. 

Consider next the times given in Chapter 2 as 

? 
i 
i 
i 

e 
:: 

D 

! 
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We shall first assume the x's are constants and then give 

a brief discussion of the modifications necessary ?f they are 

instead assumed to be random variables.  For deterministic 

T'S, it is convenient to assume that each x is a multiple of 

some fixed constant, e.g., a second or millisecond.  In practice, 

of course, this condition is always trivially satisfied. 

By virtue of the preceding assumptions, if X-, is the 

random variable giving the time to the first hit and for 

j > 2, X. denotes the time between the (j - l)sc and the j 

hit, then the sequence of random variables {X.; j > 1} is 

independent and the random variables {X.; j > 2} are identically 

distributed.  It is also apparent that X, assumes only values 

of the form T + T1 + (r - 1) T  + rt^ for r > 1, while X- 

assumes only values of the form T, + (r - 1)T  + rxf for j > 2, 

r > 1,  Indeed, we see that for r > 1 

• 

P[X1 = Ta + T1 + (r - l)Tm + rxfJ = PCS1 = r] , 

PCX. = T, + (r - 1)T + rt-] = PCS. = r] . 3   h        m    r     j 

However, this implies that the Laplace-Stieltjes transform 

of X, and X. are given by 

! 
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rye) = expC-Cx^ + TX - xm)6}MSi((Tm • xf)8) , 

(9) 

Mv (6) = exp{-(x, - T >6}MQ ((T  + T->6> . X.       r   n   m   b.  m   i 

If T denotes the time at which the target is destroyed 

or killed, then it follows that 

T = Xx  + ... + Xz . 

Employing similar arguments to those used in developing the 

transform Mj,(6), we have 

PKMX (6) 

MT(e) = r- (i - VMX(6) ' (10) 

where X is a random variable having the distribution of the 

random variables X. for j > 2.  Using (3), and (9), MT(6) may 

be expressed in terms of the basic parameters P,, u, p, and 

PK, resulting in an expression equivalent to equation 17 of 

Chapter 2.  Either by differentiating the appropriate Laplace 

transform or by observing that X. is a linear transformation 

of S. for j > 1, it can be shown that 

li 



   -• -  i^^mm^mt^fv^i^^m^- 

' 131 

.! 

i 
.1 

I 

! 

ECX1] = Ta + Tl + (E[Sl] " 1)Tm + ECsi]Tf » 

ECX] = Th + (ECS] - l)Tm + E[S]Tf , 

E[T] = E[X 

VARCT] = E[X 

+ 2 

ECX] , 

E[X2] 

]ECX] 

E2[X] - E2[T] . 

(11) 

(12) 

(13) 

The reciprocal of (12) is the attrition rate for impact- 

lethality systems which employ the single-shot, Markov firing 

doctrine. This result was obtained in Chapter 2; however, 

the methods described in this chapter have a generality that 

can more readily be employed to model other weapon systems. 

Some possible extensions and benefits of this approach are listed 

below: 

1.  In obtaining the transform MT(8), it was implicitly assumed 

that the distribution of z, the number of hits required to 

obtain a kill, is geometric. However, as long as z is a positive 
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integer valued random variable the analogue of (4) will hold, 

i.e., 

MT(e) = MX (e)Gz_1(Mx(6)) . 

2. In the preceding discussion, the x's have been assumed 

to be constants.  However, if the T
?
S are assumed to be non- 

negative independent random variables, the associated random 

variables X. will be independent for j > 1 and identically 

distributed for j > 2.  It follows that in this case also, 

expressions for the Laplace-Stieltjes transform of the time 

to kill may be obtained.  Further, using recently developed 

techniques for inversion of Laplace transforms (Dubner and 

Abate, 1968), the «xact probability distribution corresponding 

to (6) or (1C) may be obtained. 

3. Throughout our discussion we have assumed that a target 

which is being fired upon is, at the end of any given round, 

either unimpaired or destroyed. Although this is a reasonable 

assumption for some categories of weapons and targets, in many 

cases of interest there will be a number of the intermediate 

states of destruction of the target. At the cost of more 

involved computations, it is possible to extend the preceding 

ji 

0 
i! 
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analysis to cover these cases.  Thus, assume the various 

states of the target are labeled from 0 to N, state 0 cor- 

responding to an unimpaired target and state N corresponding 

to a totally destroyed target. 

In general, a target need not pasc through all the 

intermediate states before being destroyed.  Indeed, given 

a target is in state i, there may well be another state j 

corresponding to a greater degree of destruction of the target, 

and yet state j may be effectively unreachable from state i. 

To see this, consider the following simplified version of some 

results discussed by Goulet (1963). An enemy tank is assumed 

to be in one of four states:  undamaged, mobility destroyed, 

firepower destroyed, or completely destroyed.  (We assume that 

complete destruction corresponds to the destruction of both 

firepower and mobility.)  Labeling these states from 0 to 3, 

respectively, it follows that if we are in state 1, state 2 

may not be reached.  Indeed, if we are in state 1 and the 

firepower capability is destroyed, it follows from our hypoth- 

eses that the state of the tank is 3.  It is also of interest 

to note that even though a tank in state 2 would usually be 

regarded as having suffered more destruction than a tank in 

state 1, nevertheless, state 2 cannot be reached from state 1. 



»I. !i 

Assume that a tank is currently in state i cmd the next        I 

succeeding state of the tank is j.  Then by applying the 

methods described in this chapter, the Laplace-Stieltjes <fl 

transform of the time or number of rounds to go from i to j — 

may be obtained. Let the sequence of successive states of 

destruction of a tank be 0 •* i, * i2 * ... * i, * N. Then 

the transform of the time or number of rounds needed to go 

from state i. to i. + , can be obtained for 0 < j < k - 1, and 

from 0 to N. 

H.  The approach used in this chapter conceptually reduces the 

difficulty of testing the attrition-rate models against 

i 
the product of the transforms then gives the transform of the 

time or number of rounds needed to go from state 0 to N along 

this particular path.  The sum of these transforms over all 

possible paths weighted by the probability of each path then 

gives the (unconditioned) transform of the time or number of 

rounds needed to go from state 0 to state N.  The number of 

summands would appear to be very large if the number of inter- 

mediate states of destruction is large.  However, in practice, 

the states are usually labeled so that if we are currently 

in state i, then only states j with j > i may be reached. Thus, 

the ultimate computational feasibility of this method depends 

on both the magnitude of N and the number of possible paths 

• 

l! 

L 
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n 

experimental firing data.  The initial problem of drawing 

inferences on the parameters of a Markov chain (a difficult 

task) has been replaced by the significantly simpler problem 

of drawing inferences as to the independence and identical 

distribution of sequences of random variables. 

• 
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Chapter 4 

SEMI-MARKOV ANALYSIS 

Robert Farrell 

In Chapters 2 and 3, we described twc methods of obtaining 

time-to-kill probability distributions for impact-lethality, 

repeated single-shot weapons.  The attrition rates of these 

weapons are obtained as the reciprocal of the mean time to kill. 

This chapter treats a general method of developing such attri- 

tion rates without analyzing the complete distribution of the 

time to kill.  The approach taken in this development is 

based on the theory of semi-Markov or Markov-renewal processes, 

and is a generalization of the methods in Barfoot (1969). 

Basically, we analyze tHe process in which a weapon fires 

at a target until he decides to cease fire on it, fires at 

a ^cond target until he decides to cease fire on it, etc. 

This process is analyzed by subdividing the period of fire on 

a single target into intervals corresponding to differences 

in the behavior or state of the firing weapon system. i 
This technique may be used to determine the expected ST 

time to kill in any firing prccess with a set of distinguishable 

states S1,...,SN (e.g., first round fired, round fired after a 

preceding hit, etc.) as long as 

(a)  the process makes transitions at distinct points        Li 

in time (shell arrivals in the example); 
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(b) the probability of transition to S., given one is in 

8|t is p.. which does not depend on knowledge of 

any history of the process; 

(c) given an entry into S. and the next transition 

from S. to S., the length of time in the interval 

from entry to exit is a random variable distributed 

as F.., which may depend on the states S. and S. but 

is not influenced by further knowledge of the process 

history.  This random time interval has a finite 

mean} m..; 

(d) the process starts in S, (finished with last engagement, 

starting new one) and terminates with an entry to 

S,; and 

(e) every state has some probability of eve«*cually occur- 

ring. 

In essence, the technique is applicable for any continued 

firing process which may be modeled as a semi-Markov process. 

We first define 

N 
mi= H 

and f-, the Markov-chain steady-state frequencies, as the solution 

of N N 
fi • L <m,   Efi=1 • 

j = l i=l 

Pijmij 

The meaning end properties of the steady-state frequencies are 
discussed in any book on stochastic processes or Markov chains. 
See, for instance, Parzen (1962), Kemeny and Snell (1960), 
or Karlin (1966). 
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2 
Then from an elementary theorem of Markov renewal theory, 

we know that 
N 

E(T)  * f 1  jsl  J J 

As an example of the use of this method, let us consider 

a generalized version of the "Markov fire" case treated in 

Chapter 2. Let 

S^ = state preceding first round at new target after 
termination of an engagement, 

S2 = state after a hit (which did not kill) on current 

target, 

S* = state after a miss (which did not kill) on current 

target, 

u "  probability of a hit after a preceding hit, 

p = probability of a hit after a preceding miss, 

P. s probability of a hit on the first round, 

Hj. s probability that a hit after a hit kills the target, 

R- s probability that a hit after a miss kills the target, 

H, = probability that a hit on first round kills the target, 

MH » probability that a miss after a hit kills the target, 

MM = probability that a miss after a miss kills the target» 

M, - probability that a miss on the first round kills the 

target• 

T 
Then we have 5 

2 
This is_ theorem 5.16 in Ross (1970) and theorem 6.12 in Cinlar 
(1969). 

i 
i 
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i 

Pll = P1H1 * (1 " P1)M1» 

'12 « P-C-l - H,), 

p13 = (1 - P1)(l - M1), 

P21 
s uHH + (1 - u)MH, 

p22 = u(l - HH), 

p23 = (1 - u)(l - MR), 

p31 = PHM J  (1 - p)MM, 

p32 = p(l - HM), 

p33 *   (1 - p)(l - MM). 

N 
We will assume the distributions F.. or the composite 2*  P»*F.. 

• 1 
are available, and that the m. have been determined.  Now, 

solving the steady-state equation gives 

f, = (1 + a2 + a3) 
-1 

a2/(l + a2 + a3) 

a3/(l • a2 • a3) 

where 

a2 = (p32(l - pn) + P12P31)/<P21P32 
+ (1 - P22

)p31} 

a3 * ((1 - pn)(l - p22) - p12p21)/(d - P22)P31 • P21P32> 

And finally , 

E(T) = nu • a2
m2 + a3m3 (1) 

Any data which determine the m. are adequate; no particular 
forms are required. 

2 
There are many alternative forms for this solution.  This may 
not be the most appropriate for computational purposes. 
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It may be noted that although independent data entries 

(u,p,P1>HH,HM,H1,MH,MM>M1,m1,m2,m3) are required to describe the 

entire process, only 5 dimensions of freedom exist in the E(T) 

expression (a2,a3,ml9m2,m3).  Further, a2 and ag may be determined 

from 6, not 9, expressions (Pn»pi2,p21,p22,p31,p32*'  Tnus • 

a data-generation and data-handling savings may result if some 

of these compressed forms could be obtained to replace the 

12 (or more,) if the F.. or m.. are considered original dimensions 

It is clear that (1) could be rewritten to give an ex- 

pression for E(T) in terms of the fundamental process parameters 

by using the expressions for m,, m„, and nu.  The present form 

is slightly more convenient for computational purposes, how- 

ever. 
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Chapter 5 

AREA-LETHALITY SYSTEMS 

i! 
II 

I 

i 

I 

Robert Gruhl and Robert Farrell 

This chapter presents the development of a model to 

predict the attrition rate for one or more weapons classified 

as area-lethality systems. Systems of this type usually 

fire into an area without knowledge of exact target loca- 

tions and destroy targets via fragmentation or some other 

area-lethality mechanism. A field artillery battery is an 

example of this type of system and the problem is to determine 

the time rate of destroying an area target by the simultaneous 

and sequential delivery of multiple weapons in the battery. 

The attrition-rate model developed in this chapter 

employs results of the multivolley target coverage analysis 

conducted by Hess (1968).  Integral to his analysis (and thus, 

the formulas developed herein) are some specific "target 

coverage functions" and "damage functions"; however, the 

approach used to develop the attrition-rate model can readily 

consider other coverage and damage functions. 

Because of the reliance on target coverage methodology 

and the use of Hess's specific assumptions and results, these 

are briefly reviewed in Section 5.1.  The attrition-rate model 

is developed in Section 5.2. The effect of changing target 

Q 
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posture during a firing interval is considered in Section 5.3. 

Section 5.4 contains a discussion of modifications to account 

for possible nonhomogencous damage levels within the target 

area. 

5,1     Multivolley Target  Coverage 

The target coverage problem concerns methods for de- 

termining the damage to targets inflicted by the delivery of 

one or more indirect-fire weapons. Usually the coverage 

problem is used to denote the one-shot problem, while the 

multivolley problem denotes more than one shot.  A volley 

is the number of rounds fired from a group of identical weapons 

(four to eight in firing battery). A comprehensive bibliography 

of coverage problem literature can be found in Guenther and 

Terragno (1964). 

The multivolley coverage analysis used in the develop- 

ment of the attrition-rate model is given by Hess (1968). 

Except for the damage pattern assumption« Hess's model for 

the expected fraction of damage to the target is based on a 

minimum set of general assumptions. The following specific 

assumptions were used for model verification, application, 

and computational purposes: 
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Delivery  Biae 

No delivery bias exists—no aiming error, target 

location error, or intentional offset. 

Delivery Error 
Centers of impact (x,y) of the volley damage patterns 

are distributed about a mean center of impact (x,y) 

according to the circular normal distribution.  For 

convenience, we let (x,y) = (0,0), o = 1.  The delivery 

error is then 

n b(x,y) = (2TT)"1exp[-(x2 • y2)/2] . (1) 

n 

! 

Target 
A circle with radius Rt centered at the origin. Two, 

mathematically equivalent, targets are considered: 

a. A circular homogeneous-area target, centered 
at (0,0) and radius Rt, and 

b. A point target (£,n) of uniformly uncertain 
location in the area of radius R..  The target 
density function W(C,n) is then: 

, where 
TTR 

fj     W(S,n )d£dn = 1 
target 

n 

Damage Aoeumption 
i 

The damage pattern is a circular cookie-cutter" of 

radius R .  Let d(£,n;x,y) be the damage function: 

It has been shown (Gates, 1954) that a circular coverage 
damage function, which is a more realistic portrayal of an 
actual damage pattern, yields the same results as the cir- 
cular cookie-cutter if weapons are delivered with circular 
normal errors except for a larger delivery variance found 
with the circular coverage damage function.  Hence, derived 
results are applicable to a better damage function than the 
cookie-cutter. 
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dU.njx.y) = 

where 

A, (x - I)2  • (y - n)2 < R2 

(2) 

0» otherwise » 

d(S,n;x,y) is the probability that a point target at 

(£,n) will be killed by a damage pattern with center of 

impact at (x,y). Damage is either all or nothing 

(killed or not killed)—no cumulative damage is considered 

We proceed by letting 

r = distance from (£,n)i a point target, to mean 

center of impact (0,0) so that 

2   2   2 
and »' • r • «T • 

P(R ,r) s the proDability that a point target U,n) is covered 

by a damage pattern with center of impact at (x,y) 

[this is also the probability that a volley center 

of impact, subject to the circular normal distribu- 

tion, will fall within a circle of radius R around 

U,n)]. 

Then, 

P(R ,r) = jf -±~ exp[-(x2 * y2)/2]dxdy ,    (3) 

where C is the circle 

(x - O2 • (y - n>2 < R2 • 

The event that the point (£,n) is covered by a volley is a 

Bernoulli random variable. Then the probability of covering 
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C^9n> k times in v volleys is binomial: o 
n gCk;v,Rp,r) = (A  [P(Rp,r)]

kCl - P(Rp,r)]
v"k .    (H) 

This is the point coverage function. 

Letting 

D = the event a target element is damaged, 

C, = the event a target element is covered exactly 

k times, 

and assuming independence of damage (kill) between volleys: 

P(D|Ck) = 1 - (1 - A)k . (5) 

The joint probability of covering a target element located 

at (£,n) exactly k times in v volleys and damaging it is 

Pv(D • ej = P(D|Ck)P(Ck) 

= g(kjv,R ,r)[l - (1 - X)k] .  (6) 

The marginal probability of damaging an element located at 

(£»n) in v volleys is 
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PV(D) « 2 
Pv(D ' CK} 

k=l 

(7) 

B 
p, 
[1 

Defining 

P(W) s probability that the point target is at (£,n) 

2 „ n2 
= WU.n) = -^r 

*R* 

2 * n< < R<  ,    (8) 

then P (W • D) = P(W)P (D) and the marginal probabilities 

of damage (kill) to a point target, ly, is 

*v = // PV(W • mm 
tdtrget 

•// 
target 

wR 

1      ^ g(k;v,Rp,r)[l -.(1 - %fWm 
t   k=l 

v 
=   TÜ U - Cl - X)k]   fj     -±; g(k;v,Rp,r)d5dn  .    (9) 

target      t k*l 

c 
n 
m 

i 
i 
i 
i 
i 
: 
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The target coverage function is defined as 

G(k ;v,R ,R > =  // -K  g(k;v,R.r)d£dn . (10) 

target ""t 

G(k;v,R ,R.) is the expected fraction of target area covered 

exactly k times in v volleys or the probability that a point 

target is covered exactly k times in v volleys by the damage 

pattern. Thus, 

v 
?v = Z) Cl " (1 " x>k*3<k;v,Rp.Rt) 

k=0 

(11) 

is the expected fraction of damage to an area target in v 

volleys or the probability that a point target of uncertain 

location within the target area is damaged (killed).  Employing 

the specific assumptions noted above, it can be shown that 

?v£l- i <->kfö 
k*0 

*wv (i:) 

l 

where 

Sk(Rp,Rt )   = 
to 

2 
17 [P(R   >r)]>dr 

with P(R  ,r)  given by  (3). 

(13) 



me 

A large number of integrations a:e involved in the 

calculations of F • hess developed an approximation, f , 

to F by replacing 6(k;v,R ,Rt) with 

Q( k;v,Rp,Rt) = (][)csi(Rp,Rt>]
KCl - 81(ltpiIt)]

v*k ,   (1H) 

where S,(R ,R.) is the probability a target element is at 

(£,n) and covered by the damage pattern, or the expected 

fraction of the target covered by the damage pattern in one 

volley.    The resulting approximation is given by 

. 

V 

k=0 

= 1 - [1 - XS,] (15) 

where si^RD»
R
t^ is denoted by S,. 

The approximation f is subject to large error if R or 

R. are not small relative to the circular probable error, CEP 

(radius of a circle centered at the mean impact point containing 

50 percent of the impact locations). A correction factor CFV 

was devised by Hess which corrects, for the basic assumptions 

above, the approximation f to within 1 percent of ry. The 

i 

i 
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correction factor is given by 

CF = 1 - (v - Dye ~(v-2)6 (16) 

* 

The parameters y aTid  * are charted by Hess (1968, pp. 212-21). 

Thus, the corrected approximate expected fraction of damage 

is 

Fv = fvCFv 

= Cl - (1 - XS1)
V]CFV (17) 

i 

5,2    The Attrition Rate 

F is dependent on the number of volleys, v. Assuming 

a constant firing rate, f, the corrected approximate expected 

fraction of area target killed as a function of time, denoted 

ft <|>c(t)  =  [1 -  (1 - XS1)*fc3Cfft  . (18) 

. 

. 

If N is the number of independent and identically 

distributed targets in the area at the beginning of the time 
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interval [0,t], the expected number at t is 

n(t) = LI - •cCt)3N . 

The expected number at (t + T) is then 

n(t + T) = Cl - *c(t * x)]N . 

Then 

ft . lim n(t t  j> - n(t) 

= lim inill  - tJtt • x)3N - Cl - •eCt)»} 

- • »t     «*          

| (t • T) - 4>c(t) 
lim - N 

. .*.(« . <19) 

Comparing this expression with Cl] of Chapter 2» Part A, 

for a single Red group (J = 1) and only one firing Blue 

unit (m « 1) suggests that the attrition rate for indirect- 

fire» area-lethality systems be taken as 

a -  «ICOM • <20) 

This is based on the assumption that the probability mass 
function of the number of survivors is binomial with parameter 

Cl - •(t)3. 
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A useful simplification of (10) for numerical evaluation 

of the general combat equations is obtained if we use the 

uneorrected approximate expected fraction of area target killed 

in (20). That is, substitute 

<|>(t) = 1 - (1 - XS^ft (21) 

for •Ä(t). Then c 

• »(t) = -f(l - XS1)
ftln(l - XS^ . C22) 

But (1 - XS,)ft is the fraction of area target not damaged, 

and therefore, 

(1 - XS./1 = W&  . (23) 

Substituting (23) into (22), 

- f/n(t)\ • f(t) = -fln^-) • ln(l - XS1) 

Then, 

\ i 
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It - -N[^f . InU - AS,)] 

s -n(t)f . ln(l - AS,) . 

But -f • ln(l - AS,) = <fr»(0) when <fr(t) = [1 - (1 - AS,)51] . 

Therefore, the attrition of an area target due to indirect fire 

from one Blue firing unit is 

$  = -n(t)<T<0) 

and 

«uncorrected *  •'<»>»<« . C2-0 

This simplified form of the attrition rate should be used 

only when Hess's uncorrected approximation, 

<fr(t) = 1 - (1 - AS,)ft , 

o 
L 

n 

i 
i 

i 

it appropriate and the interpretation of (23) can be given to 

(1 - AS,)  • It is dependent on the assumption that the targets 

continuously uniformly distributed themselves in the target 

area and therefore that the probability of n(t) survivors is 

B 

11 
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binomial. In general, $(t) is a good approximation if R » R. 

or when R+ < a, R^ < or (where Rw is the radius of the lethal t     p p 
effects circle, R. is the radius of the target and a  is the 

standard deviation of the delivery error) or when the number of 

volleys, v = ft, is small, e.g., 

= $(t) is a good approximation to F for v < 10 
when Sl  *   .2183, A = .25, R s 1 CEP, Rt = 2 
(see Hess, 1968, p. 88 ). 

CEP 

Returning to the basic attrition rate (equation 20), 

I 

"I 
' 

•c(t) S 3t Cl " (1 ' ASi)ft3,[1 " (ft " l>Ye~(ft~2)6]  (25) 

n -fY«~Wfc~wJ{l - 6(ft - 1)  -  (1 -  XS^> -(ft-2)6, ft 

• [(ft - l)ln(l - AS1) + 1 - <S(ft - 1)]} 

-f(l - *§->** ln(l - XSX) 

after some algebraic manipulations. Employing (22) and letting 

c«(t) = -fYe"(ft"2)6(l - 6(ft - 1) - (1 - AS1)
ft 

[(ft - l)ln(l - \SX)  + 1 - 6(ft - 1)]} ,   (26) 

LI 
*- <- "Mm 
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^(t) = c»(t) + ••(t) . (25)      J 

Thus, the attrition rate using the corrected approximate J: 

expected fraction of damage to an area target is r 

a s CcHt) + •,(t)]N . (26) 

5.3   Different Target Poeturee 

The basic model assumes that the target vulnerability 

does not change during a volley attack. However, in practice, 

target elements (e.g., personnel) usually respond to an attack 

by changing location and/or oosture in order to decrease their 

vulnerability.  In this section we consider the change in 

target posture (e.g., from standing to prone to being in a 

foxhole) following Hess's analysis and show its effect on the 

uncorrected attrition rate. 

Let 

A s the number of target postures, t >  1, 

A. = probability of kill given a coverage while 
<  in the i  posture, i * 1, 2, ... A, 

v. = the corresponding number of volleys the target 
1 .f-V 

is in the i  posture such that 

I 

/    v. s v s total number of volleys. 

i=l 

i 
i 
i 
i 
i 

o 

D 
U 
Ü 

I 
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Then the uncorrected approximate probability of kill in v 

volleys, f , to a point target of uncertain location within 

the area (or the fraction of damage to an area target) is 

(Hess, 1968, p. 9*0 

* v. 
f = 1 - n (1 - X.S ) - 
v      i=l     ±  1 

(27) 

or alternatively 

fv = 1 - [1 - X(v)S13
v , (28) 

t 

where 

X(v) = the expected probability of kill given 

coverage in v volleys, 

A       vVv 
1 - n (1 - X,) i (29) 

i=l 

Let v s ft in (28) and (29) and v. = ft. in (28), where 

t. is the amount of time spent in posture i and 

i 
i=l 

*< - t . 

0 
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Thus, 

•<t) = [1 - (1 - X(ft)S1)
ft] 

4>'(t) = |pC-<l - X(ft)Sx)
ft3 

. d m {« - *»H 
where a(t) = X(ft)S1 and b(t) • ft. Thus, 

••(t) = [1 - a(t)]b(t) . |b'(t)ln[l - a(t)3 

+ b(t) i—KTZT  C-a»(t)]i . 1 - a(t) I (30) 

Evaluating the derivatives, 

b'(t) = I» (ft) = f 

a»(t) = - d . cx(ft)Sl] - S1|FA(ft) , 

where 

i        t./t 
X(ft) = 1 - n  (1 - X.) x 

i :1        X 
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Let t. « a.t, where 0 < a. < 1 is the fraction of the 

total firing time the target spends in posture i. Then, 

i a.t/t 
A(ft) = 1 - II (1 - A.) x 

i=l     x 

= 1 - n (1 - A,) i d?f , (31) 
n i=i i    =  Aa . 

n Thus, jfA(ft) = 0, and a'(t) = 0. Therefore, from (30) 

• »(t) = -(1 - *a
si>ft  find - *a

si> • 

n 
and setting t = 0, 

j!    j '• 

4>'(0) = -find - A^) , (32) 

where Aa is given by (31). Equation 32 is used directly in 
a 

(2 4) for computing the uncorrected attrition rate with target 

posture changes. 

5,4    Nonhomogeneoua  Lethality 

The attrition-rate model using the uncorrected approxi- 

mate expected fraction of area target killed assumes that A, 

the probability of kill given a coverage, is known for a given 
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target and weapon combination and is constant over a given 

target area (i.e., a target element is not more vulnerable 

in one part of the area target than another).  In this section 

we show how the model can be extended to include varying degrees 

of vulnerability in the area with respect to one target type. 

The basic assumptions for the extension are similar to 

the previous development except 

Damage 

Assume the damage pattern is a circular cookie- 

cutter of radius R„: 
M   e P 

A1   (x - O2 + (y - n>2 < R2, n > o 

iU,n;x,y)  =   ( A2    (x - O2 +V<y - n)2 < R*, n <  0 

I  0      otherwise  ,     . (33) 
I 

where (£,n) is the location of a target element uniformly 

distributed in the target area, the circle of radius R^. 

Thus, the probability of damaging the target with a single 

coverage is different depending on whether or not the target is 

in one semicircle or the other which comprise the target area. 

Similar to the previous development, let 

D = the event a target element is damaged, 

C. s the event a target element is covered exactly 
K times, 

A. a the event (|»n) is in target area \  (j a 1,2) * 
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n 

which leads directly to 

U 

PCD|Ck • Aj> « 1 - Cl - Xx) (34) 

P(D|Ck • A2) = 1 - (1 - X2) (35) 

• 

Since the probability of C, is given by (4) and 

P(AX) = P(A2)  = (2TTR^)'
1
 , (36) 

then 

PCD • Ck • Ax) = CairR^)"1 gCk;v,R ,r)[l - (1 - X^*]  (37) 

.2v-l PCD • C. • A2) = (2l*£)  g(k;v,R ,r)[l - (1 - A2>*].  (38) 

Letting Dy be the damage in v volleys, 

PCDV • Ax) = y^ Pr{D • Ck • Ax) 

k=l 

= C2TTR 

k=l * ' 

CPCRp,r)] 
k 

Cl - PCRp,r)]
v"k[l - Cl - X ̂ } 

I ' » 
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and 

P(D.. • A„> * T! pr,{D ' Ck * A2} 'v  "2 
:=1 

v 
,k .(^^Exa^v*»1 

k=l 

P(DV • A) . UnR*)"1 £JQ CP<Vr)]i 
k=ll 

• [1 - P(Rp,r)]
v-k 

: 

n 

• [1 - P(Rp,r)]
V-k Cl - (1 - *2>klj • .. : 

Since the events Ax and A? are mutually exclusive for a single 

target in the total area A, 

R 

. j[i - (i - x1)ki • [i - (i - x2)
kij} 

• KrlE^tP(Rp'r)]kci - p(vr)]V~k 

k=l 

. [1 -!<i - xx)k -|(1 - x2)k]| 

and 
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P<V =  1. SI (*Rt)"1E|«(k*v'Rp' irßet       k=i 
r) 

• {l - JfU - Ax)
k • (1 - A2)

k]}jd4dn 

v . 

= 2 {ci - ^[(1 - A2)
k + (1- A ,M 

k=l ; 

yy  Cltl)"1 g(k;v,Rp,r)dCdn|. 
tareet ) 

(39) 

ion The double integral in (39) is the target coverage funct 

G(k;v,R ,R.) given by (10) which, as an approximation, can be 

replaced by Q(k;v,R ,Rt) given by (l'O. Analogous to the 

previous development this leads to the uncorrected approximate 

expected fraction damage f s 1y  . 

k=l N / 

k=l w 

v-k 

k=l *' 
(i - A2)]

k(i - s1)
v"k 

N 

1 - 7 C(1 " Aisi>V + (1 - A2sx)v]  . (MO) 
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Equation 40 can be used directly as $(t) to estimate the 

attrition rate with the uncorrected approximate expected fraction 

damage. 

By induction, the analysis of this section can be extended 

to m different damage levels associated with m equal partitions 

of the target circle. This results in the approximation 

m 

D 
I 
I 
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HOMOGENEOUS-FORCE DIFFERENTIAL MODELS 
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The basic structure assumed to describe the combat ac- 

tivity was given in Part A by the coupled sets of differen- 

tial equations 

dni    T* 
3^- = -LAyirJm.   for j = 1,2,...,J »   [1] 

dm. 

wr = -E }   BjjL(r)n. for i = 1,2,...»I • [2] 

The preceding part of the report described methods that have 

been developed to predict the principal input to these equa- 

tions—the attrition rate. This and the next part of the 

report present results of research that has been directed 

to obtaining solutions for the above equations, where a 

solution is taken to be the trajectory of surviving forces 

of each group during the battle as a function of basic inputs 

and initial numbers of forces. 

Ideally, it would be desirable to have the solutions in 

simple, closed form which would readily portray the relation- 

ship between the independent factors of the combat process 

and the surviving numbers of forces. This would facilitate 

"Logistics and locations of survivors can also be determined 
as part of the solution, but are omitted in this discussion. 

Preceding page blink 
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both sensitivity analysis and determination of those inde- 

pendent variables which significantly contribute to combat 

effectiveness. Attempts to obtain such closed-form solutions 

have focused on simplified cases of the combat equations 

in order to obtain some insight into the solution proce- 

dures and problems related thereto.  These simplified cases 

include (a) homogeneous-force battles (one group on each side) 

which are described in this part of the report, and (b) constant- 

coefficient, heterogeneous-force battles which are described 

in Part D. 

Chapter 1 considers the case of constant attrition rates 

for both the Red and Blue weapons.  Chapter 2 presents the 

solution to a special case of variable attrition rates in which 

their ratio is a constant. The effect of assault speed under 

this condition is examined in Chapter 3. Chapter U presents 

some approximation results for general variable attrition 

rates in homogeneous-force battles. Analog solutions for 

linear attrition-rate functions are presented in Chapter 5. 

Analytic solutions for a hypothetical fire-support situation 

with variable attrition rates are given in Chapter 6. 

! 
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Chapter 1 

CONSTANT ATTRITION-RATE MODEL 

Seth Bonder 

In this chapter we consider the simplest homogeneous- 

force battle model in which the attrition rates are constant 

and the intelligence coefficients are unity.   The constancy 

of the attrition rates indicates that they are neither functions 

of battle time nor range between weapon and target groups. 

Since there is only one group on each side, the allocation 

factor is also equal to unity for each force. 

These assumptions reduce the heterogeneous-force battle 

equations to 

dn . 
It = -am (3) 

^=-3n (i») 

if the attrition rates are also not functions of the number 

of surviving targets and 

Ü = m*Am 

it • -•*• <•> 

All research presented in this report has considered unity 
intelligence coefficients. 

, ... —•• I,.. i _ 
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The attrition rates for area lethality systems are the only 
ones developed to date which are state dependent.  According- 
ly the battle description given by (5) and (6) is the only 
state-dependent attrition-rate case examined in this report. 
Other hypothesized state-dependent descriptions are sum- 
marized by Dolansky (196 4). 

D 

I 
I 

! 

f 

when both sides employ area-lethality weapons.  The attrition 

rates in (5) and (6), (a.n) and (0»m), reflect the dependency 

of the uncorrected area-lethality attrition rates developed in 

[B,5.0] on the number of surviving targets where, notationally, 

o. and 3. are given by $'(0) of that chapter. I 

Equations 3 to 6 are the classical combat formulations 

of F. W. Lanchester (1916).  Equations 3 and 4 comprise the 

more familiar "modern combat" description ir, which it is 

assumed that combat takes place at close quarters such that 

each unit may take any enemy unit under fire and, having I 

killed that enemy unit, shifts its fire to another enemy 

unit.  Combatants whose weapon systems have attrition rates 

classified as impact lethality  (see [B, 2.0]), and 

are oonetant throughout the battle^  would be consistent 

with this formulation.  This description additionally as-        | 

sumes that units on either side are within weapon range of 

all enemy units and that fire is distributed uniformly over 

remaining units. 

The solution of equations 3 and 4 with the time variable 

removed—called the state solution--is obtained by dividing 

(3) by (4), integrating, and employing the initial force 

size conditions that, at t = 0, n = N and m = M.  This 

i 
! 

: 

I 



fl 
i »lim in • «a— a» »••——w- »m1 

169 

leads to the result that 

D 

0 
0 

a(M2 - m2) = 3(N2 - n2) % (7) 

which is invariant throughout the battle. Thus, for any 

specified number of surviving Red units, we can determine the 

associated number of surviving Blue units.  For example, 

if the Red force is annihilated (n = 0)>then 

m2 = aM2 - 3N2  , ) 

which indicates that Blue will have some surviving units if 

2    2 

Inequality (9) implies that Blue will win the battle, 

if winning ia  taken  to  be annihilation of the opposing force, 

The condition 

I 

aM2 = BN2 (10) 

implies a draw (Red and Blue forces approach zero simul- 

taneously).  Lanchester called this condition an equality of 

fighting atrengthe  and, since it is proportional to the 

square of the force size, has been given the familiar name 
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"Lanchester's square law."  This suggests that there exists 

a definite advantage in concentrating forces.  If the Blue 

force has a weapon whose attrition rate is fear times greater 

than the Red force weapons, the Red force will require only 

twice the initial number of forces to have equal potential 

of annihilating the Blue force. 

2 
The time solution of this simplified description of 

combat is well known and readily obtained by substituting 

(3) into the derivative of (4) and solving the resulting 

second-order, constant coefficient, differential equation 

under the initial conditions that n = N and m = M at t = 0 

producing 

n = N cosh C/oBt) - /nil M sinh (/x$t) (11) 

and 

m = M cosh (/oBt) - 4T75 N sinh (Säht) . (12) 

It is also a straightforward task to determine the time 

Weiss (1962) notes that Lanchester's square law was apparently 
anticipated by Rear Admiral Bradley A. Fiske as early as 
1905.  Fiske stated that (Robison, 1942):  "The decrease in 
offensive power of a weaker fleet fighting a stronger is 
geometrical, instead of arithmetical, and that there is a 
continually increasing difference between the powers of two 
fleets as an action progresses which favors the stronger 
fleet." This is the effect of concentration described by 
Lanchester's equations.  Although Fiske qualitatively described 
this phenomena, Lanchester was the first to formalize it 
in quantitative terms. 

*"Number of surviving Red and Blue units as a function of 
battle time. 
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n 
(T£) required for the i  side to be completely annihilated 

as the min    T£,TJJ     * where 

y 

J 

D 

.1 

11 mi x" = —    tanh * [~ /ß/d J (13) °   m 

j .     x* = JL tanh"1 (f /m J   . CMI 

These are derived from equations 11 and 12 by setting the left- 

hand side equal to zero and solving for the appropriate 

time. 

Equations 5 and 6 contain state-dependent attrition 

rates derived in [B, 5.0] for weapon systems that use area- 

lethality mechanisms. The implied assumption^ are (a) the 

targets are uniformly randomly distributed after each volley 

of fire, (b) each unit knows the general area in which 

enemy units are located but not the consequences of its own 

fire, and (c) fire from the surviving forces is distributed 

uniformly over the area in which the enemy forces are lo- 

cated. In the literature equations 5 and 6 are known as 

Lanchester's linear law formulation. 

The state solution is obtained by dividing (5) by (6), 

integrating, and employing the initial conditions that at 

t = 0, n = N and m = M 

a.(M - m) = SA(N - n) , (15) 

ii 'mm''rirfTn- if -••••» > • 
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which is invariant throughout the battle.  If the Red force 

is annihilated, the associated number of Blue survivors 

is 

m  = aAM " 8AN ' (16) 

which is positive if 

aAM > ßAN . (17) 

Thus the condition 

aAM = 3AN (18) 

-log 3An 
= k(-t + c), (20) 

implies that both forces will approach zero simultaneously 

if the battle is described by equations 5 and 6.  This 

formulation suggests that a force's fighting strength is        I 

proportional to the force size, giving rise to the name 

"Lanchester's linear law." 

The solution for the number of surviving forces as a 

function of time is obtained by solving (15) for cum and 

substituting this quantity into (5) producing 

an = -<Kn + ßAn
2) , (19) 

where   K = (o.M - SAN).  Integrating (19), 
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where C is an arbitrary constant evaluted by the initial con- 

dition that n = N at t = 0. 

If (1 + ^-) > 0, from (20) 0An 

C = " t  lo*Cl + ßfN] (21) 

if a • jL> < o , 

c--iiof[-(i + A>] • (22) 

Substituting either (21) or (22) into (20), 

log 

1 +  K 

1 + 
K 

3An 

= -Kt 

and 

.3 N(4»-Dt 
N(6 - De A  n "    =OTFTTE 
<£ - 6 

(23) 

where 0 = aAM/3.N.  Substituting (23) into the state solution 

(15) and solving, 



17U 

M(4> - 1) 
m -5AM#-i>t 

* - e A 
ySm . C1M 
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Chapter 2 

VARIABLE ATTRITION RATES, CONSTANT RATIO MODEL 

Seth Bonder and Robert Farrell 

In the previous chapter we considered the most straight- 

forward simplification of the basic combat structure— 

homogeneous forces with constant attrition rates, i.e., 

attrition rates that are not dependent on battle time or 

range between the firing weapon and target.  Thus the 

attrition-rate functions (see [B, 1.2 and 1.3]) are constant 

throughout the battle. 

Except for the unlikely situation when neither combatant 

moves during the course of the battle, the assumption of 

constant attrition rates is highly unrealistic.  Consideration 

of the acquisition, accuracy, timing, and lethality charac- 

teristics explicitly included in the attrition-rate prediction 

models [B] strongly suggests that the attrition rates would 

vary with changes in force separation.  In this and Chapter 

3 we shall consider the effect of this variation in the 

homogeneous-force battle model with the restriction that the 

ratio of the attrition-rate functions,a(r)/ß(r), is constant. 

This restriction is imposed for analytical purposes in that 

it facilitates workable closed form solutions that provide 

some insights into the effect of maneuver in a battle. 

'The results of the previous chapter will, of course, be a 
special case of those developed in this one, since the ratio 
of constant attrition rates is also constant. 
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2.1     Battlefield  Coordinate  System 

As previously noted, the attrition rates will vary when 

either or both of combatants use mobile weapon systems.  The 

movement of units can be implicitly considered by retaining 

the battle time dependency in the combat equations or 

explicitly by converting to a range dependency.  Knowledge 

of the movement schedule provides a one-to-one correspondence 

between time and range (force separation) during the battle 

so that they can be, and are, used interchangeably.  Use 

of the range dimension requires the establishment of a 

coordinate system for the battlefield. 

Consider the simplified one-dimensional coordinate system 

depicted in Figure 1. 

y+ n force ( Red) m force (Blue) 

n 

n 

m 
r 

vm 

— 

I 

: 

-» 

. 

i • 

-. 

*i 

x+ 

Figure 1.  Plan View of Terrain 

'Die distances s and s are the ranges of the Red and Blue n     m ° 

lines, respectively, from a common reference axis.  The range 

between forces at any point in time is denoted by the symbol r 

T-ie respective velocities of the Red and Blue force are v  and r n 
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vm.  From the geometry of the figure 

n 
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r=s-s sm>s«    (D m   n m   n 

and 

-»*%  ds   ds i or _  m    n 
dt " dt " dt 

or 

v * V„ - v  , (2) m   n 

• 

where v is the relative velocity between the Red and Blue 

forces.  An examination of (2) and Figure 1 will indicate that 

the differential dr has the same sign as v and, accordingly, 

the type of engagement to be analyzed depends on the values of 

v and v .   In a meeting engagement v > 0 and v < 0 
MI     n n m 

with a resulting rapid decrease in force separation.  For 

an attack engagement v = 0 and v  < 0.  The conditions for a 

retrograde operation are vn > 0 and vm > 0.  If vn > vm, the 

range between forces will decrease as the Blue force with- 

draws.  If v  < v , the force separation will continuously 

increase.  When v = v  in the retrograde operation, we have n   m 

the situation described by Weiss (1957) in which the bat- 

tlefield shifts but the force separation remains constant, 

i.e., dr/dt = v = 0. 

The attrition of forces in this homogeneous-force battle 

model is described by tne same equations ujed in the previous 

chapter except for the explicit dependency of the attrition 

Engagements are described with the Blue force ar.   reference. 
That is, an attack engagement considers the Blue force 
advancing and the Red force defending. 
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rates en range.  Thus 

and 

m  = -a(r)m (3) 

|f = -8(r>n , (14) 

where the Blue and Red weapon attrition rates, a(r) and ß (r), 

respectively, are now denoted as functions of the force 

separation r, i.e., the attrition-rate functions.  For clar- 

ity, however, we shall omit the functional notation throughout 

most of the developments where emission will not be mis- 

leading. 

Equations 3 and k  are used directly in the next sec- 

tion to obtain solutions for the case in which a(r)/ß(r) 

is a constant. Explicit range dependency and mobility 

considerations for the general case in which oi(r)/ß(r) is not 

constant are.added to the description of combat by trans- 

forming (3) and (4) from the time tc the space domain. 

From (3) 

d /dn\ .  f dm . m  dal at(aty- -[a at + m aTJ 

f dm dr ,  da drl = Y 3F JF + m d? at J 
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:: 

0 

d2n 

dt 

We also note that 

[' dm MO v jjj    +  v  m -^ dal 
drj 

dn    m „ dn 
dt    "  v d? 

and 

(5) 

(6) 

, 

dm    „dm 
dt v dr 

Differentiating   (6j > 

d2n 
= V 

dt 
— ($R\ ($L\      £H <*v dr 
dr \dr/ \dt /  dr dr dt 

(7) 

v2 äfü + v dv dn 
dr2     dr dr 

.,2 d2n    dn 
(8) 

v dv . 
where üI = V^ 13 the relative acceleration between forces. 

Equating (5) and (8), employing (3), (4), (6), and (7), and 

rearranging , 

d2„ 
dr2 

GJ 1 da 
a dr 

dn a8 n = 0 (9) 
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Analogously, 

2 
dm 

dr2 [;*-»«]••-(#••••• (10) 

Equations 9 and 10 can be used to describe a wide vari- 

ety of homogeneous-force combat situations.  If co = 0, the 

equations describe constant-speed engagements.  As noted on 

page 3, the different possible values for v = (v - v ) 

facilitates describing attack, defense, meeting, and delay 

engagements, and retrograde operations.  Different weapons 

are considered in terms of the attrition-rate functions 

a(r) and $(r) . 

The next section of this chapter presents the general 

time and range solutions to the structure given by equations 

1 and 2 and analyzes the effect of a constant assault 

speed (w = 0) using linear attrition-rate functions for the 

Red and Blue weapon systems. 

i 

2,2     Time  and Range  Solutions' 

Consider a re-write of equations i and 1 in which we 

denote the attrition-rate functions as functions of battle 

t irr.e 

Q  = - a(t)m (ID at 

l. 
he general solutions described in this section were first 

presented to the Operations Analvsis Techniques working cr^ur 
.t rho ,\*rd ""•'• irv derations Research Symposium, West i'oint, 

*••"*' VorV ,  i.r.v-  1969.  Sol it ions to special cases were ivporte«! 
lsv iv : :er C i 96 S ) . 

- 
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and 

$S-8Ct)n . (12) 

We explicitly note the requirement for constancy of the ratio 

of attrition rates as 

- 3(t) _ 3(0) _ f< 
c" ÖTE7 " oTcT " a 

(13) 

where 

a(0),Lß(0)J = The Blue [Red] weapon attrition rate 
when the battle begins at t = 0, 

a [3 1 = The 3lue [Red] weapon attrition 
rate when the force separation 
r = 0 . 

Letting 

x = /  ot(t )dt (i**) 

and substituting dx/dt into (11) and (12) 

dn 
dx 

(15) 

dm 
dx 

= - en do) 
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These are coupled, constant coefficient, differential 

equations whose solution, using the boundary conditions 

dn n(C) = N, m (0) = M, and dx x=0 = -M, is given as 

n(x) = N cosh (/ex) - - M sinh (/c~x)    (17) 
/c 

and 

n(x) = M cosh (/ex) - /c" N sinh (/c"x) m 

Rewriting 

= / a(i)dT = if  a(T)dt 

0 L   JQ 

(18) 

(19) 

i 

i 

= öTtT t , I 

where a(t) is the time average of the attrition-rate function 

Substituting for x in (17) and (18), 

n(t) = N cosh [/cSTtTt] M sinh [/CoTtTt]   (20) 

and 

;r.(t)   =   M  cos:-.   [/caTtTt]  -   /cw  sinh   [/cäTETt].       (21) 

! :   we   censiuer  a   constant-speed   Blue  aitack   en^a^ement 

;•':. ! :• - . def er.se,   i.e.,   v     =   0,   then v   =   v     if? 



183 

.. 

t = - 
F  - r o 

(22) 

where 

R = range at which the battle if initiated« 

Thus, the range average of the attrition-rate function from 

the beginning of the battle to range r can be written as 

7TF7 = 
-( " - • .<•< p R - r o 

o 

(R^ - r o / 
a(s) ds CO 

Note that »(r) is also positive for r > R    and is assumed r o 

independent of the assault speed. 

With this transformation, the surviving force., as a 

function of range to the defended position is ^iver. directi\ 

as 

n(r) = N cosh [0(r)] +  -— [0Ü ) (. 

and 

~.(r) = >:  cosh L*6(r)] + (r) j< (r it) 
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where 

e(r) = /^HTFTl   °..   r l (26) 

is always a negative quantity since v < 0 and the other 

terms are positive. 

The state solution, in either the time or space domain, 

is derived in the same manner as the constant attrition- 

rate case (see page 168) and given by 

a M2 < fiN2 . (28) o     o 

a CM2 - m2] = 3 CN2 - n2j . (27) o o 

This is analogous to the classical Lanchester square law , 

which implies that Blue would lose, i.e., be annihilated, if 

i 
The fallacy of this statement becomes apparent now 

that we are considering explicit movement of one of the 

forces.  Recognition of the capability to move suggests wc 

consider an end of battle condition which is different from 

complete annihilation of one force or a draw in which both 

forces tend to zero simultaneously. A force can counter 

the lose or draw condition by using its mobility.  This i:^ 

seen in the following discussion which considers specific 

attrition rate functions xor the Blue and Red weapons. 

i! 
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Assume the Blue and Red forces are equipped wiih weapon 

systems such that 

. . 

e 
a(r) = 

K (Rö - r) a e 

0 < r < R 
—  — f> 

r  > R 

G   <  r   <  R —       —  e 

r > K 

(29) 

• 

and 

3(D = 
ir (R

e - r) 
e 

VRe - r) 

1 P 1    R 

r > K 

0 < r < R —  — e 

(30) 

r > *  , e 

where 

R = the range at which e  weapon system first 
u  obtairs a nonzero attrition rate 

W slope of the Blue [Red] weapon attrition 
rate function . 

These attrition-rate functions are shown in Figure 2 along with 

the starting range parameter for the battle. 
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a 

Attrition - 
Rate 
Functions 

o e 

Range Between Forces (r) 

Figure 2  Constant-Ratio, Linear Attrition-Rate Functions 

«(r) = -  «    -r)      Ka(Re-  s) ds 

«*   (r2RS-s
2ir! 

2(R„ - r)    \l   e JR   ) 

*a       r 
2(R„  -  r)   I 

(R       -   r)^    -    (R      -   R    ) 
e e o ] 

. 

Using the Blue attrition-rate function for values of 

- o - e' 

'• 

»1       III    I II  Mil 
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a 

•>K TR° - r) I (Re " r)2 
e o r - (R  - V J • 

(öD 

Substituting (31) into (26) gives 

and 

Vr; "  2R~" (R  - r)A - (R  - R )fc e e    o  j (3D 

n(r) = N cosh 6^ + M sinh 9» 

n(r) = M cosh 6» + /~c N sinh 0 * . (34) 

The subscript I  on 0 indicates it is the argument 

for solutions (24) and (25) when linear attrition-rate func- 

tions are appropriate. 

With these solutions we can see uhe impact of mobility 

by considering the range intervals such that units of the 

Red and Blue forces survive.  Setting n > 0 and solving for 

r in (33), the range interval for the Red force is 

r > R -V -2R v • • tanh 
/a S" oo 

N % 

M /cT 
+(Re - R )' , (35) 



and from (24) the range interval for the Blue torce is . 

V-2R v 
— a» 

o o 

tanh -1 
rM /ST' 

n/t; 
+  (R« - Rn) e   o (36) 

We define R. as the range at which the j ! force has i sur- 

viving units.  Examination of (35) and (36) will reveal that, 

if /oT  K <   /3^N , then R° > R°, and consequently, the Blue 

force aould  be destroyed before they reached the Red force 

defensive line.  From (36) 
5? 

Rw = R - m   e 4 -2K v      T 
e    v-i '- ' •   tanh 

M /a  o 

N /g~~ o 
e   o 

(37) 
:: 

and, if /F~ N > /ST M, 

o 
an 

o o 
; 

-2R v 
•  e  tanh" 

o o 

 o 

N /B" 0 J 

+ (R* " R«> e   o 

(38) 

r 

.. 

> o 

Since, however, ?v is a negative number as jv| increases, 

R° decreases as speed increases.  Therefore, if the an tack 
m e 

:. 
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were conducted with sufficient speeu, the Blue iovcc  could 

overrun the defended objective with some surviving units. 

This concept of using mobility to saturate the defending line 

is examined at length in Chapter 3. 

2.3    Some  Historiaal  Perspectives 

Recognition of the capability of a force to move, and 

consideration of and of battle conditions, adds, in a quanti- 

tative manner, another dimension to the classical differential 

theory of combat, vis, a force can attack with sufficient 

speed to saturate an'enemy's retaliatory capability.  in ac- 

cordance with the classical force-concentration principle, 

the model indicates that attacking with sufficient speed and 

superiority in numbers is an ideal means of rapidly saturating 

an enemy's firepower.  More importantly, the model suggests 

that, in the absence of force superiority, an attack with ade- 

quate speed is a means of conserving one's own force, i.e., 

get tha enemy before he gets you. 

Since it is difficult to conduct experiments during 

military actions, deductions of this nature are hard to verity, 

In addition, the unavailability of reliable empirical informat 

regarding past battles (Schroeder, 1963; Helmbold, 126-) 

precludes quantitative comparison of the model in retrospect. 

The concept of attacking with appreciable speed to saturate 

an enemy's retaliatory capability does, however, appear ro com- 

pare favorably with military experience. 
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In discussing the offensive employment of tanks, General 

Bruce C. Clarke noted (1962): 

Always use the maximum number of tanks practicable 
in the assault.  Move fast in the assault.  Close 
fast with the enemy.  Fire tank machine guns on 
the move.  The tank casualties you will suffer 
will vary as the amount of time it takes from the 
line of departure to the objective.  In a tank, 
'speed is armor.'  Thus the tank tracks, 
if properly used, are both an offensive weapon and 
a help in its protection. 

During World War II, Field Marshall Rommel frequently employed 

panzer attacks against larger forces.  This is noted by Al- 

fred Gause, Rommel's chief of staff in North Africa (1958): 

The general strength ratios and the supply situation 
compelled Rommel   [italics mine] almost always to 
attack numerically superior forces. Thus, ir his 
attack against Bir-Hacheim-Ain el Gazala positions, 
where he sought to force a decision, he deliber- 
ately opened the offensive on 27 May.1942 with 
an adverse strength ratio of 6:9 in tanks. 

The Sinai campaign (O'Ballance, 1959) describes small-unit en- 

gagements in which the victorious Israelis conducted success- 

ful attacks in the face of strongly entrenched Egyptian posi- 

tions.  This campaign represents the most recent, but by no 

means historically isolated, demonstration "chat saturation of 

an enemy's retaliatory capability by rapid assault is an impor- 

tant factor in successful combat. 
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Chapter 3 

THE EFFEC1 OF MANEUVER: 

CONSTANT-RATIO ATTRITION-RATE FUNCTIONS 

W. P. Cherry and Seth Bonder r 
The previous chapter presented a general solution to the 

homogeneous-force, differential model of combat with 

constant-ratio attrition-rate functions.  Explicit consider- 

ation of assault speed and force separation in a Blue force 

attack engagement indicated that three outcomes are possible 

in an engagement of this kind: 

(1) Annihilation of either the attacker or defender, 

(2) A draw in which both sides tend to zero simul- 

taneously> 

(3) The attacking force overruns the defended position. 

In this chapter we shall examine the conditions under which 

the third of these outcomes occurs and, in particular, study in 

detail the effect that assault speed has on the battle results. 

It is reasonable to conjecture that, if the defended 

position is overrun, the ensuing "close-combat" battle 

(if one occurs at all) will not adequately be described by 

our basic differential equation structure.  Accordingly, 

it is of interest to examine the impact that assault speed haö 

on indicators or measures of  future success in teking the 
i 

deiendeu positi« .., whei e   success implies winning I he "close- 

,:;,.;"       ..  : hv uefenJed position or having the 

f 

i 
i 
i 
i 

:. 
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defenders retreat before the objective is reached.  The 

measures considered in this analysis are the difference 

(m - n) and ratio (m/n) of survivors when the attacking force 

reaches the defended position (r = Q).  The effect of as- 

sault speed on other measures of success, such as the ratio 

(m ~ n)/(n + n) at r = 0 or the ratio (m/n) at range r, 

can be obtained by a directly analogous approach. 

Before proceeding it is important to remember that the 

analysis is based on having a constant ratio or attrition- 

rate functions.  Accordingly, the results should not be 

interpreted in any absolute sense, lut rather to provide 

Jörne basic insight into the dynamics of combat. 

3. 1    Preliminary  Results  and Notations 

In the preceding chapter we showed that the surviving 

numbers of units as a function of force separation was 

given by 

n(r) = N cosh [6(r>] + -±- M sinh [9(r)l 

and 

(1) 

m(r) = M cosh [6(r)] + /£  N sinh [6(r)] , (2) 

where 

(r) = JE  ÖTFT [ — 
- r 

(3) 

c = 3(r)/a(r) = ßQ/ao 



.'-. 

^--ar^yf - (s)  ds       . OO 

R 1 

At  r =   0 , 

n(0)   =   N  cosh   (0°)   +   —    M  sinh   (0°) (5) 

m(0)   =   M  cosh   (0°)   +   /ON  sinh   (6°) , (6) 

where 

6°   =   9(0) 

=  /SaUnf^J (7) 

= C/v (8) 

since,   except  for  the  assault  speed,   all  the  terms  on   the 

right-hand  side  of   (7)  are  treated  as  constants   in  the  analysis 

We  note  that   6°   < 0 and  that 

30o _ ^ /c crnra0 

ov~  ' 2 v 

o 
*  - £-  <  0   . (9) 

We  also  h  /e 

— =   IM   sinh  J     + Vf./a     N  cosh  e°    |i( 

»   o     o J   3v (10) 

i 
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• VV^ »IT- (11) 

by substitution of (1) and 

3n 
77 r=0      L 

=  |N sinn 6° +   fJaTF" M cosh 0* l w  o    o 
99 

>v 

o 
(12) 

aV a /$ o Ko 
m 57 (13) 

For the measures (m - n) and (m/n) at r = 0 to be mean- 

ingful, we must exclude cases in which m(0) < 0 and n(0) < 0. 

2     2 
For a M < ft N , the assault speed which will result in 

o    Ko 

m(0) - 0 is obtained by setting (6) equal to zero and solving 

for 

m.-Q -C 

tanh -1 
du) 

where 

So.  ÖTÖ7 R o (15) 

2      2 
Analogously, if a M > 3 N , then n(0) = 0 at 

,n«0 _ 
"•• C 

tanh 
r/TN1 

o 

•5T M 0 

(IG) 
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Thus, the defended position will be overrun for assault 

speeds -v > -vm~  or -v > -vn~ , which ever is appropriate. 

Our concern in this analysis is the effect of assault speed 

in these intervals. 

3.2  Different Attviticn-Rate Functions 

Analysis in this chapter of the effect of assault speed 

on the measures (m-n)and (m/n) at r = 0 is general in that 

it can be applied if the ratio of the attrition-rate functicns 

is constant, independent of the shape of the individual attri- 

tion rate functions. However, the magnitude of the speed 

effects will vary when different attrition-rate functions are 

used. In this section we list a number of attrition-rate 

functions that have been specifically considered. The func- 

tional shapes were suggested by examining the range variation 

in predicted attrition rates for weapons with widely different 

characteristics.  The constant Lanchester attrition rate is 

also included. 

- - 

. 
This examination was made using arithmetic mean rates, E(SJT), 

before it was shown that the appropriate mean rate to^ 
use is the harmonic mean, 1/E(T), as proven in LB, i.2]. Since 

the reader is cautionec that other functional forms may be      r 
more appropriate. If 
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Linear: 

a£(r) 

£«. - r) 

o 

r < R — e 

r > R 

(17) 

(R - s) ds e 

Wh  (2ReRo " Ro2) e o 
(18) 

e? « 2^4 (2ReRo - Ro2) 

Quadratic: 

(19) 

a (r) « 

o   Re 
r < R — e 

r > R 

(20) 
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^m 
= fe/a< 

(s) ds 

i 

«• 

R~R 
o  e 

1  *   (3R   2R     -   3R  R     +  R   3)     (21) i e    o e o o 
'* 

,o  = ^ofo     (3R  2
R 

«      R*v e    ° e 

fa 
V 

3R   R     +   R   °) e o o 

(22) 

Cosine: 

ac(r) = 

!|[1 + cos(^)]r< R 
(23) 

r >  R 

•c(0)   = (s)  ds 
» 

i 

•St [^.^ •*»(?)] (24) 

/ä~1T ,o oo 
c   =  "TT~ [Ro• - si" (£)] 
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fl 
1 

Exponential: 

-(R -r) 
0(1  -   e 

a   (r) e 

) r   <   R —    e 

r  >   R 

(25) 

(26) 

error e if*0   c s)  ds 

-   a o 1  - ?("-) (27) 

i 
i 

/ÖTX" 
9e v- Ro I X       "S S(M 

(28) 

Lanchester: 

aL(r)  = 

Ü 
r  <  R 

—    e 

v > R 

(29) 
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R 
aL(0) = R7 J      aL(e) ds 

0 

= <>0 (30) 

/öl R 
o° -    O O O 
9L v  

CL 
(31) 

: 

H 

The surviving numbers of forces for some of the different 

attrition-rate functions are compared in Figure 1.  These 

are obtained by direct substitution of the appropriate attrition- 

rate function in (4), (U) into (3), and then (3) into (2) 

and (1).  The narked differences between the formulations are 

evident—especially between the variable attrition-rate form- 

.: 

1 

0 
ulations and the Lanchester constant attrition-rate one. -» 

For example, the constant attrition-rate solution predicts 

annihilation of the Blue force at 700 meters with two remain- 

ing Red units, while use of quadratic attrition rate function 

would predict ten Blue and four Red surviving units.  As 

shown in T:gvre   7  these differences are reduced when the en- 

gagement range (K_) is mu_n less th .n :he effective range of 

i 

;; 

D 
Li 
D 
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the weapon (Re)> and, in the limit as the weapon's effective 

range approaches infinity, the solutions converge to the one 

with constant attrition-rate functions, a,(r).  This obtains 

since the differences in the solutions are solely dependent 

on the form of 0(r) and 

Lim 8.(r) =  Lim 6 (r) =  Lim 6 (r) =  Lim 0 (r) = 0T (r) 
R +00  *       R *oo  4      R _>«,  C       R +«  e        L 
e e e e 

1 \ 

It is of interest to point out that the large effect of 

the assault speed (noted in the last chapter and in following 

sections of this one) and the difference R  - R     (noted above) e   c 

on the numbers of surviving forces may explain some of the 

conflicting conclusions of studies to verify the classical 

Lanchester theory via the correlation between observed and 

theoretical attrition histories of battles.A If a battle were 

fought without appreciable movement or if R were appreciably 

less than R , observed attrition data might correlate with 

predicted attrition of forces in a battle regardless of the 

particular weapon characteristics, i.e., attrition-rate func- 

tions.  If, however, the forces employed moving weapons, and 

R * R * failure to explicitly consider specific variations in 

weapon attrition rates with range might readily produce large 

deviations between observed urA  predicted force attrition. 

U 

- i 

0 
For example, Engel (1954), Weiss (1957), and Willard (1962) 
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i    ' 

II 
•• 

1 

SIZE 
OF 

RED 
FORCE 

(n) 

30 

25 

20 

SIZE 
' OF 

1 
BLUE 4« 

FORCE15 

• 

(m) 

10 

5 

M>N 
<L0M<ßoti 

QUADRATIC 

CONSTANT 

M = 2>J   N=H0 
CLo'Ax r2 

ß0 --1.0 x 10-2 

V   »~5.0M.RH. 
Rc« 2000 m-star. 
R0«-iOOOi.iöir;rs 

.. j. ". ii rz. ii.".. I 
600 GOO iOOO 0 200 400 

RANGE (MEYERS) 
Figur?. 2   Comparison of Surviving, Nunbcrp of Forces for 

JJ5. f f er-•• nt A11ri t ion Ra t e- Func15 ons 
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2.2    The  Difference   (m  - n) at   the  Defended Position 

In this section we consider the difference (m - n) at 

r = ü > which we denote as d .  For assault speeds -v < «v 

or -v <-vn , as appropriate, d is a constant . This is 

seen by considering a M < ß N .  Then for -v <_ -v " , m = 0 

for some r > 0 and 

m=0 

n _n  = N cosh <j> +  /JTTsT M sinh 6   . 
O  O 

(32) 

whore 

<f» = -tanh 
-1 

N /r 
(33) 

is obtained by setting (2) equal to zero.  This implies 

that 8° = <fr, which is a constant. Thus, for -v < -vm=0, 

2     2 
d = -n sQi which is a constant.  Similarly, for aQM > :<0N 

and -v < -vn=0, d = m „n, which is a constant such that —       o   n- u 

m „ = M cosh ty + /377ÖT N sinh ty >       (3V) 
n= ü o o 

: 

where 

^ = -tanh 
-1 N /I 

M /a 
(35) 

is obtained by getting (1) equal to zero.  Thus, for 

0  -v < -vm*° or-vn* , 3co/3v • 0.  The value of dQ for 

i 
''-*»>*Mu^MHUKMk)MSi!£jfti^MHflH 
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this speed interval is constant for all attrition-rate f 

tions and depends only on M, N, «, ß0> 

Substracting (5) from (6) 

unc- 

. 

' 

<U = CM - N) cosh ö° + 
(ß N - a M) 

o o 

/a ß~ 
CO 

sinh 8 o (36) 

Setting d^ = o implies 

0  (6 N - a M) 
(M - N) cosh 6° = -2 2- (.sirh BOj 

/a 3 o c 
(37) 

-tanh 0' 
CM - N)/Crr"~ 

o o 
Cß N - a M) Ho    o 

and since 0° < 0 , 

0 < 

(M - N) ggj 
(ßQN - aQM) 

(38) 

Suppose (M - N) > 0, then (ß N - a M) > 0 and rr oo 

(M  -   N)/o~T~ <   ß  X  -  a  M     , o   o o o 

which  implies  a M'   <   ß  N     .     Similarly,   the  assumption 

that   CM -  N)   <   0   implies   that  a M     >   ß  N   .     Accordingly, 
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dQ = 0 for (M - N)(fi N - o M) > 0 and 

a0M
2 < B N2   if (M - N) > 0 

a M2 > M2  if (M - N) < 0 o     o 

Thus, dQ = 0 for two sets of initial conditions 

Condition I: Condition II: 

(M - N) > 0 (M - N) < 0 

a M - 3 N  < 0 o    o 

a M2 - 3 N2 < C 
o    Ko 

a M • M> 0 o    o 

a M2 - 6 N2 > 0 o     o 

(39) 

The speed that results in d  = 0 is obtained from (36) 

by 

- v _m=n 

tanh 
-1 (M - N)/aT" o o 
O - a M o    o 

(«40) 

Consider the quantity 

D  = 
M  vT       CM -  M/ST" o o o 

N  /g" 
$ N - a M Mo o 

a   (6  N2  -  o M2) c     c o  

3~ N   (0 N -  a M) o o o 
(41) 

B 

Ü 

L 



"-"- . _ . _ •  •• «wiw»tm^^^m^ 

• 

il 207 

So far we have considered the cases in which d equals 

a constant (-n  ~ or m _n) and d =0.  We next examine the m-0    n-0      o 

sign of d when it is not a constant, i.e., -v : -v   or 

TTT" P 
-v " as appropriate.  Examination of (36) leads directly to 

I.   If M = N, 

(i)  PQN - aQM > o=#m-n< 0 

(ii)  ßQN - aQM < 0=?>m-n> 0- 

II.  If M > N, 

(i)  3QN - aQM < 0=>m - n > 0 

(ii) 3 N - a M = 0=-£>m - n > 0 o    o      ' 

. 

III. If M< Ni 

(i)  B N 
o 

a M > 0 ==>m - n < 0 o 

(ii) 3 N o a M = 0 —>m - n < 0 

This leaves the following cases for consideration 

IV.  M > N and (3QN - aQM) > 0 

(i)  aQM
2 > 30N

2 

(ii) aQM
2 < 3QN

2 
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I 

! 

V.     M < N and (ßQN - aQM) < 0 

(i)  aQM
2 > ßQN

2 

(ii) aQM
2 < 80N

2. 

Cases  IV(i)  and V(ii) 

Consider Case IV(i).  Suppose dQ < 0, then from (36) this 

implies 

CM - N) /5J£ 0 
__ -—T  < -tann 6 

<ß0
N * aoM> 

(M - N)/0oßo 
°<   ^ß0N - aQM) 

< 1  > 

(M - N) /OT  <  B N - a M 

or 

o^o 

aoM
2 < ß0N

2 , 

which is counter to the assumption in this case.  Thus d^ < 0 

and, by reversing the inequality, it is easily shown that, in 
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fact, d > 0 for Case IV i.  By a directly analogous argument 

it can also be shown that d < 0 for Case V(ii). 

Cases IV(ii)   and V(i) 

Both these cases lead to d = 0 if v = v ~n given by 

(40).  Consider IV(ii) and suppose d < 0.  From (36) this 

implies 

•0° > tanh"1 
(M - N)/^B^ 

"" 3 N - a M o    o 

and 

-v < 

tanh 
-1 

= -v m = n 

CM - N)V^T0 

lf0M - a0M) 

For dQ > 0 it follows that 

-v > -v m=n 

In an analogous fashion for Case V(i), it can be shown that 

d     <   0 if -v > -v o 
m=n 

and 

dÄ > 0 if -v < -v o 
m=n 
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A summary of the effects of variations in M, N, a , 

ßÄ on d^ are shown in Table 1.  The value of d depends on the o    o o r 

signs of 

I. tial Conditions:   M - N 

Linear Conditions:    a M - 0 N o    o 
2      2 

Quadratic Conditions:  a M - ß N . o    o 

2      2 
The condition a M = ß N is also included in Table 1. o     o 

Substituting for M and N in (5) and (6), respectively» 

.o 
n(0) = N e e 

and 

m(0) = M e 
8 

For M i  N, 

dQ = (M - N) eö . 

Thus, d has the same sign as CM - N) and cannot be zero for 

finite v. 

Finally, we note that as v • -«, d •*  M - N.  This intui- 

tively obvious result obtains from (36), where 

3_N - a  M 
lim d = (M - N)  lim cosh 9 + — °- lim sinh 6 

V-*-oo V-»— oo ra  ß opo 
V+-00 

=  V. -  N 

since  6     =  C/v   . 

1! 

:' 

D 
a 
ii 
i 
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Table 1      The Difference dQ  As a  Rinct.ion of K,N,ao>ß0 

M - N I a M - 6  N o o 

0 

0 

>0 

>0 

>0 

>0 

<0 

<0 

<0 

<0 

0 

>0 

<0 

<0 

>0 

>0 

0 

<0 

<0 

<0 

0 

>0 

>0 

0 

<0 

>0 

a  M2  -  ß  N2 

o o 

<0 

>0 

>0 

>0 

>0 

<0 

<0 

<0 

<0 

>0 

d     =   (m - n) at r =   0 

<0 

>0 

>0 

>0 

r   *N 

<0 

0) -v 

.   tanh 

<0 

<0 

<0 

-1 (M- N)  /OTT o o 
P  N -  ci  M 

o o 

°)-v{--) 
tanh -1 (M-M)/snr l 

ß  N -  a  M o o 

0 

>0 

<0 

Ü 
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i. 

which is positive for condition I in (39).  Hence, 

tanh 
ll"M ^1     -1 T(M - N)/a /OTT' o o (42) 

which, by comparing (14) to (40), implies 

-vm=0 < -vm=n (4?) 

Consideration of condition II in (39) analogously implies 

-vn=0 < -vm=n (44) 

1 

I! 

D 
0 

We note that for dQ = 0, m = n, 9° is fixed, and from (5) 

dnd (6) 
D 

m = n = M cosh (ß) + /8Q/ao N sinh (ß) 

= N cosh (ß) + /aQ/B0 M sinh (ß) ,     (45) 

•• 

where 

ß = -tanh -1 
CM - N) •oTT" 

o o 
ß Jl - a M o    o 

(46) 

Thus, the constant m = n is independent of the form of the 

attrition-rate function. Q 

I! 
D 
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fl 
3.4    Tfce Derivatives of dr 

.! 

In this section we examine the behavior of the derivatives 

of dft with respect to the assault speed v.  From (36) 

.1 
D 

d» o 

3do 

N) sinh e° • V " aQM) cosh e° 36 
3v 

o 
(47) 

Consider firFt the cases in which d* = 0.  Setting (47) 

equal to zero » 

a which implies 

-tanh 0l 
6  N -  a  M o o 

(M  -  N)yTT o  o 

(48) 

n 
: i 

i 

:l 

If 

3rtN  -  a M 
0  <  —° 2_ <   !    . 

(M - N)/?TT o  o 

(K  -  N)   >   0 

3  N -   a M  >   0 > o o 

(49) 
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then from (49) this implies a M2 > ß N2.  If 
o     o 

(M - N) < 0 

ß0N - aQM < 0, 

then this implies a M^ < 3 N2. 

Employing (10) and (11), d^ can be written as 

and 

32d 

3v 

2 

=   <«-„>  (ff)    +[/67ron-^7ß;m] 2rto 3 6 

3v2 

2. 

since 

.2Äo 

(50) 

do Z^7%  n '^7*1  m} if C51) 

- <»-*> {If)   -7do <52> 

3 6    2C .   2 39 

av2 ' v3 " " v ^ ' (53) 

For the conditions specified.by (49), a M
2 > $ N2, df = 0 

an£ irt, *ablc  , d. > 0.  Therefore, d£ > 0 which indicates 

that dQ is a Minimum di the speed for which d' =0.  In a 



• " 

215 

! n 

: 

o 
0 
D 

! 

.1 

directly analogous fashion, the conditions of (50) (and th*> 

2      2 implied a M < 0oN )  suggest that d" < 0.  Thus, d  has a 

maximum at the speed for which d1 =0. The speed which results 

in d' = 0 is obtained by setting (47) equal to zero and solving 

for 

-v 
df = 0 

o c 

tanh" 
rß0N - «0M        l 

LCM-  N)/,030J 

(54) 

using the condition (49) or (50).  It is shown in Appendix C, 3 

that the limit of d' is zero as the assault speed approaches 

infinity whether or not d' = 0 for lower assault speeds . 

Consider next the case in which d' ^ 0.  Since o 

39°/3v < 0, we have directly from (47) 

M - N = 0 

(i)   a M - 3 N < 0 —> 3m-n 
3v < 0 

(ii)  a M - 6 N > 0 => |222 > Q 
u     o a v 

M - N > 0 

M - N < 0 

(i)   aQM - 3oN > 0 => fSZS > o 

(ii)  a M - 0 N = 0 => f^£ > 0 
O      O o v 

(i)   a.M - 0_N < 0 => §«-ä < o  \ 9m-n 
3v 

(ii)  a M - 3 M : 0 ~ "> |S=£ < 0 o    o ? v 

Ü 
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This leaves four cases for consideration.  The first is 

I.   M - N > 0 

aQM - eoN < 0 

a M2 - g N2 > 0 
o    Mo 

< 

This is condition (49) , which laads to d^ = 0 for the assault 

speed given by (54).  For d' < 0, (47) leads to 

-v > 

taith 
-1 r & N - a M 1 

o    o 

(M - N)/CTB0 

= -v 
d' = 0 o (55) 

d' = 0 
and for -v < -v °  , d^ > 0 

the case 1 

In a directly analogous fashion 

II. M -  N <   0 

a M -  $ N >   0 o o 

a M2 -   6  N2<    0 o o 

leads  to 

d' = 0 
•v - -v °    —>  a'0 < P 

-v   >   -v  °       =>    df   >   0    . o 

. •. 15 c a s e  is   : o ru i -1: - - n   (60; . 

i 
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The third case is 

III. M - N > 0 

• t 

aQM - ßQN < 0 

a0M
2 - ßoN

2 < o 

Consider (47) and suppose 

1 

:: 

n 

ßnN - a M 
(M - N) sinh 0 + -2 °- cosh e° < 0 (56) 

This implies 

'Vo 

D 

3 N - a M 
0 < —° °__ < i 

CM - K)/Z^ 

=> V*2 < aoM* * 

which is contrary to the above assumption.  Since the left- 

hand side of (56) is not equal to zero under the state conditions, 

it must be greater than zero» which implies that d' < 0.  The 

fourth case 

i : 

IV. M - N < 0 

aQM - 0QN > 0 

aJi2 - ß N2 > 0 o    Ko 
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is analyzed in a directly analogous way to Case III and implies 

df > Ü. o 

The two conditions specified by (49) and (50) have 

assault speeds such that df = C.  For (49) we have vn 

given by (16).  The difference 

N g N - a V 

1  M   o o 
o 

/aoßo  (M - N) 
(57) 

o Mo K  *oN 
2 /To  ß MM • ^7M" 

/cT M(M - N) v/aQßo 

T; (aoM
2 - ßoN

2) 

/^~ M(M - N) /ao0o 
>  0 . 

Therefore , 

N 
J N - a M 
o    o ä /T75-  >_ 

M  ° °    /O"  CM - N) o o 

tanh 
lM  °   J        L(M- H)^   J 

and 

-v 
d'.o 



- r$**r*m»*r 

7 
II 

D 
:: 

D 
•i 

D 

.; 

o 
D 
. ! 

219 

In a similar fashion from (50), -v 

is given by (15). 

Finally, we note that at d' = 0 

«J' = 0 o    .      m=0 
-v    , where -v 

m = M cosh x + /$ /a  N sinh v A    o o 

n = N cosh X + &  /ß  M sin!» X , 

(58) 

(59) 

where 

tanh o N - a M 

(M - N)v/a~3 
o o 

(OH) 

The constants in (60) are independent of the form of the at- 

trition-rate functions employed. 

Table 2 summarizes the results or this ami  the previous 

section.  The different cases have been numbered to correspond 

to the numerical examples given in Section 3.6. 

i 
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3.5 The Ratio m/n at  the Defended Position 

In this section we consider the ratio m/n at r = 0 > which 

we denote as p • The derivative 

n9m  m3n 

Po = —     n2 

H '#i^*2-^»2»i£ 

when (10) and (11) are employed.  Since 36°/3v < 0, the con- 

2     2 dition that p* > 0 implies fin - a m < 0 at r = 0.  Sub- 
O        '00 

stituting (5) and (6) intc this condition 

n 
U r 

3o IN
2 cosh26 + 2 ^P^0   MN sinh 9 cosh 6 + j 

o 

|] «aQ M2 cosh26 + 2 /g75; MN sinh 6 cosh 6 • Js N2 sinh26 

30N
2 [cosh2e - sinh2e] < aQM

2 [cosh26 - sinh20] 

=> ßow2 < «y. 

In a similar manner 

4 ' ° => ß0N2 s «0M2 
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and 

p; < 0 =^> B0N
2 > c0M

: 

These derivatives plus the fact that a A    >   0 implies p^ > 1 r o      w o 

lead directly to the results found in Table 3. 

3.6    Some Numerical  Examples—Linear Attrition-Rate Functions 

This section presents a verbal description and some speci- 

fic numerical examples to amplify the mathematical results 

developed in Sections 3.3, 3.4, and 3.5.  The examples employ 

linear attrition-rate functions from the Blue and Red weapons. 

The conditions considered correspond to the cases listed in 

Table 2 and are principally concerned with situations in 

which the B3ue attack force overruns the defended position, 

i.e., the assault speed is greater than some critical speed. 

In overrunning the objective the attacker would obviously 

desire to do so with maximum d = (m - n) at r = 0.  Since 

v < 0 and |v| is increasing, 3v < 0, and it is advantageous 

for the attacking Blue force to have d* < 0.  This implies 

that 3(m - n) > 0 or that the increase in Blue survivors is 

greater than the increase in Red survivors. 

See Section 3.2 for the specific attrition-rate functions. 
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- 

Case  1 M = N 

o M - S„N < 0 o    o 

aQM
2 - ßQN

2 < 0 . 

Blue is linearly inferior and, coupled with the initial 

equality, is quadratically inferior.  For -v £ -vm~ the attack- 

ing force is annihilated at some r * 0.  For -v > -vm~ , Blue 

overruns the Red defensive line, but is always inferior 

(d < 0).  Since d' < 0, Blue's inferiority decreases as the 

attack speed increases. Minimum d occurs for -v £ -vm~ 

and increases to zero as speed increases. 

Case   2 M = N 

a M - $ N > 0 
o    o 

«O
M2
 - »o»' * ° 

Blue har linear superiority and, coupled with the initial 

equality, is quadratically superior.  For -v > -vn  Blue 

has terminal superiority.  Since d' 21 &» as tne attacking force's 

speed increases, its superiority at r = 0 decreases.  Maximum 

superiority occurs for -v £ -vn~ and decreases to zero as speed 

increases . 
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Cases   3 and 4 M - N > 0 

ID 
(3) o M - 3 N > 0 o    o 

(4) OLM - $ N = o . o    o 

In both cases Blue has quadratic superiority. Hence , for 

-v <_ -v  , the defending Red force is annihilated by Blue at 

some r > 0. For -v > -vn" the Blue force overruns the 

n 

0 
Ö 

defensive position, always with terminal superiority, d > 0. 

In this case, d* > 0 and d decreases as speed increases. 

Maximum d occurs at -v £ -vn~ and decreases to M - N as 

-v increases. 

Case   5 M - N > 0 

aQM - 3QN< 0 

o M2 - SJJ2 < 0 o    o 

.1 

D 

In this situation the attacking Blue force will be annihilated 

at r > 0 if -v < -v m=0 For -v > -v m=0 the Blue force will 

overrun the Red defensive line.  Since d* < 0, the difference 
o   ' 

d increases as speed increases.  Choice of v is much more cri- 

tical in this situation since 

(M - v*rf^£ 
L *oN * *oM ]• 
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f 
That is, v determines if Blue is terminally superior, 

equal, or inferior.  Minimum d (<0)  occurs for -v <  -vm~ . 

The difference d increases to M - N as speed increases for 

-v > -vms0. 

Figure 3 is a graph of d0 as a function of assault speed 

for specific values of M, N, a , ß corresponding to case 5. 

The linear attrition-rate function has been used with R = 
e 

2000 meters. The battle starts at RQ = 2000 meters.  Note that 

in this situation, by appropriate choice of speed Blue not 

only avoids annihilation but also ensures numerical superiority 

at r = 0. 

Figures H and 5 are graphs of d' and p for the same situation 

as Figure 3. We note that the "return" from an increase 

in speed is diminishing.  This can also be seen in Figure 3, 

that is, d' > 0 and tends monotonically to zero. The graph 

of p indicates a rapid increase to about the initial ratio 

M/N. 

II 
a0M - 30N < 0 f 

aoM
2 - f$oN

2 > 0 . .       | 

In this engagement for -v < -v   the defending Red 

force will be annihilated by Blue at some r >^ 0.  For -v > - 

Blue always has terminal superiority, dQ > 0.  Maximum dQ 

occurs for -v < -vn .  In this situation , however, d does 

v n«0 

u 
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<t0 = .1 x 10"2 

/3o=1.0x10"2 

Re = 2000 meters 
R0 =2000 meters 

M>N 

«oM2<^0N2 

m* 25.8-3 
n«8.7ö 
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V  (mites/hour) 
5u 

Figure 5 Force Rati :io at  r  =   0 
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not monotonically decrease to M - N, but has a minimum, after 

which d^ increases to M - N. o ft 

d' o 

tanh -1 
ß N - a M o    o 

(M - N) /5£F^ 

" 

Figures 6, 7, and 8 are graphs of d , d', and p , respectively, 

in this situation.  Note the minimum of d at v = -43.20 and o 

the zero of d^ at that speed which indicates that the sign of 

the return changes from negative to positive at this point. 

Cases   7  and  8 M - N < 0 

. 

: 

(7) a M - 3 N < 0 o    o 

(8) a M - ß N = 0 o    o 

In both situations Red has quadratic superiority, and 

hence, for -v <_  -vm  , Blue will be annihilated at some r >_ 0. 

Further, since d < 0 for -v >-v   , Blue is never terminally 

superior.  However, d' < 0 and thus this inferiority at r = 0 

decreases as speed increases, to M - N.  Minimum d  (<0) occurs 

at -v < -v msO 

i. 
y 
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Caee  9 M - N < 0 

aoM - ßoN > ü 

aQM
2 - 3oN

2 > 0 . 

In this engagement, for -v £ -vn~ the Red defensive 

force will be annihilated for some r ^ 0.  In this case termi- 

nal superiority depends on a critical speed since 

dQ (    0 \ for -v 
(M - N) /5^7 

- ' tanh ~ i 60>! - a0M~ 
• 

Here maximum d (>0) occurs for -v <_ -vn~ and Blue retains 

terminal superiority so long as 

-v < C. 

tanh -1 
[CM - N) /SJl        | 

L  ßoM-aoM   J 

As speed increases d decreases to M - N, and d' > 0 . 

Figures 9, 10, 11 depict dQ, d£, and PQ, respectively, for 

this case. Note that in this situation it is to the attacker's 

advantage to proceed slowly. 

Caee    10 M - N < 0 

aQM - 60N > 0 

aQM
2 - 0ON

2 < 0 
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Under these conditions for -v < -vm  the Blue force will be 

annihilated at some r > 0.  For -v > -vms° Blue will overrun 

the Red defensive position but will always be terminally 

inferior, dQ < 0.  However, dQ depends on v in the following 

manner: 

dQ / 0 \ for -v 

and d has a maximum at 

> tanh -if 
ßoN - *oM [ S0N - a0H   -I 

|_(M - JO SZJÖ     J 

-V s 

tanh -1 M - °oM 

(M - N) ^s; 

-• 

Minimum dÄ (<0) occurs at -v < -v
m" , dÄ increases to a max- o —     * o 

imum then decreases to M - N.  These results are shown 

in Figures 12, 13, and 14. 
• 

Cases   11-13 «o"2 - W2 = ° • 

It was shown in Section 3.3 that in this case 

d s (M - N) e 8' 

and 

d s (M - N) e 0
C d£ 

3vm 

Hence, if Blue has initial superiority, Blue has terminal 

superiority and as speed increases, d increases to M - N. 
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Similarly, if Blue is initially inferior, Blue will not have 

terninal superiority, d < 0 and as speed increases d decreases 

to M - N.  If M = N, the forces are equal for all assault speeds 

•i 

3. 5 References 

Engel, J.H., "A Verification of Lanchester's Law," Operations 
Research*   Vol. 2, No. 2, 195ii, pp. 163-71. 

iiss, H.K., "Lanchester-Type Models of Warfare," Proceedings 
of  the First International  Conference on Operational 
Research,,   Operations Research "Society of America, Balti- 
more, Maryland, 1957. 

Willard, D., Lanchester as Force in History:    An Analysis  of 
Land  Battles  of the  Years   1618-190Sy   RAC-TP-7U, Research 
Analysis Corporation, McLean, Virginia, November 1962. 



' 

243 

Appendix C, 3 

THE LIMIT OF df = d(m " n) 
O    3 v r = 0 

WHEN SPEED APPROACHES INFINITY 

Peter Cherry 

In Section 3.4 it was shown that 

do r <<M - N) sinh 0 
ßQN - aQM 

— cosh 6 
a o o 

Since 8 •+ 0 as v + -». the limit of d' is zero and the "return" 

from an increase in attack speed eventually must be diminishing 

The "return" is considered as the magnitude of the change AdQ. 

This is seen if we write d' in the following forms: 

If a0M<(ßo 

then 

a ) > $ Nz(ß - a ) o   Mo  Mo   o CM - N)2 > 
ß0N-«M 

-*o 

Stt o>o 

d' -• D sinh (9° + d>) |1 > o 3v 

where" 

D = [sign (M - N)] VA2 - B 

A = M - N 

B = gp
N - o0M 

1 x The function sign (x) = T^T ' 



2UU 

<f> =     tanh 
-i i     *GN - «oM 

Sa^Fo     <M - N) 

f  (M - Nr < / g N - aoM\ 
o        o        o o        o        o 

then 

where 

d; = R cosh (e° * *> |i  , 

R =   [sign  (0 N -  aJO] VB
2
 - A2 

'o        ~o 

A  =  M -  N 

B  = 

i/; =  tanh -1 

0oN -  aQM 
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• 

If $  or + is negative9 then the functions cosh (6° + if/) and 

sinh (6 • $) are monotonic, decreasing as |v| increases and» 

hence»|d'| is monotonic, decreasing as |v| increases. 

Letting f(v) = d at assault speed v, then 

|f(V;L) - f(v2)| = |f,(0||v1 - v2| . 

|f'(C)| is monotonic, decreasing to zero» and then implies that the 

"return" |f(v') - f(v) | decreases for |v | increasing if 

|v* - v| is held constant. 

For the cases $ > 0, i// > 0 the above reasoning holds 

only until 6° = -<J> or »0 and f'(6) = 0.  In the case <P  >  0 

we can argue that at 6° = -$, the function has a minimum 

or maximum and from that point increases or decreases to 

limit M - N as |v| increases.  Furthermore, this increase 

or decrease is monotonic since d_= D cosh (G + 4> ), > - 

Hence, while the "return" from an increase in attack speed 

may increase, at some point, specifically where d" = 0, 

the return begins to. diminish and continues to do so thereafter. 

In the case i/> > 0, dQ = R sinh (6° + i/O changes sign at 

9 = -1// .  Sinh (6 + ip) is monotonic increasing with respect 

to 0°.  6  = v is monotonic, increasing with respect to v as 

|v | increases.  The function 6° = - » moreover, has a decreas- 

ing "return" as |v | increases; hence, sinh (6  + ty)  has a 

decreasing return as |v | increases, i.e., Ad decreases, for 

constant A |v | as |v | increases, and Ad does not change 
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sign in this case. 

If M - N = 0, > 

s  B£N1V! cosh 

If a N - a M = 0, o     o 

i 

d^ = (M - N) sinh 0 |£ 

In both these cases |f'(£)j is strictly mcnotonic, decreasing 

to zero, and the return = |Ad | is diminishing with respect 

to a constant increase in speed. 

i 
i 
i 
i 
i 
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Chapter 4 

VARIABLE ATTRITION RATES, ANALYTICAL RESULTS 

ii 
D 

Donald Ballou 

Chapter 1 of this part of the report considered whe case of 

constant attrition rates for both the Red and Blue weapons. 

Chapter 2 presented the solution to a special case of variable 

attrition rates in which their ratio is a constant.  The 

effect of mobility for this latter situation was examined in 

Chapter 3.  In this chapter we consider the general form of the 

homogeneous-force battle model with variable attrition rates 

dn . a(r) m 
d? " vTF7 m (1) 

um m  $(r) 
dr ' vTFT (2) 

and the case in which weapons on both sides have linear attri- 

tion-rate functioas: 

a(r) = 

K (R a a - r) 

B(r) = 
VRs - r) 

r < R — a 

r > R 

r < R. 

r > R, 

(3) 

(4) 

"Notation used in this chapter corresponds to that employed 
in previous ones. 
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In the general case the assault speed v(r) is a positive func- 

tion of r and in the linear attrition-rate case is assumed 

constant. t. 

The general methods applied to the study of these differen- 

tial equations are 

(1) generation of a sequence of successive approximations 

which converge to the solution of the equations, 

each approximation of which may be generated from the 

preceding approximation by elementary mathematical 

operations (some analysis of error bounds is included); 

(2) generation of a power series solution to the system 

of differential equations; 

(3) comparison techniques to generate expressions for 

upper and lower bounds to the solution of the system     * 

of equations; and 

(4) quasi-linearization to obtain a solution for the ratio 

o = n/m as the maximum of a fairly complex integral 

and algebraic expression. 

Although none of these techniques has led to immediately useful 

results, they have given rise to some limited insights and show 

promise for more interesting results with further research. 

The next four sections are aevoted to presenting the results 

of these studies.  They are presented in the order listed 

above, which corresponds to our present understanding of their 
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ö 

usefulness and promise.  The results in each case are stated with 

several of the proofs only outlined or omitted where their 

developments are obvious or mathematically straightforward. 

A discussion of the different approaches and an evaluation of 

their relative strengths and weaknesses is presented in Sec- 

tion U.S.  Future research directions are discussed in Section 

4.6 along with some thoughts on ways to enrich the present 

results. 

Clearly, applications of the solution functions are 

meaningless if they are negative.  However, from a mathematical 

point of view negative values for the surviving numbers of 

forces presents no difficulty, and hence,in all the presentations 

the functions n(r), m(r) are considered on the closed interval 

[0,R ] regardless of their sign.. 

The following theorem is of a general nature and gives an 

idea of the behavior of the zeros of the solution Cn(r), m(r)] 

to (1) and (2) on the interval [0,R ). 

Theorem  1 

The solution functions n(r) and m(r) to (1) and (2) 

can vanish at most once on [0,R ).  If either n(r) or m(r) 
o 

should vanish on [0,R ), then the ether Cannot.  In o 
particular, n(r,) = m(r,) = 0, r,e[0,R ), is impossible. 

The proof is based on arguments concerning the sign of the 

derivatives of n and m at any zero. 



2 50 

4. 1    Method of Successive Approximations 

The first part of this section gives results for general 

a(r) and ß(r), while the second considers the case of linear 

a(r) and 8(r).  In order to use the method of successive 

approximations, the system of equations are rewritten in matrix 

form: 

• <V - C , 

where 

<t>(r) _ /n(r)\ 

Note that if <J> is continuous and satisfies 

»r 

o 

then, since A is continuous, 

d£ 3*(r> = A(rWr) 

The derivative 

(5) 

(0     a(r)/v\ 

8(r)/v     o) (6) 

C = (2 (7) 

(r) s { +/ A(s)4>(s) ds , (8) 

R 

i 

I 
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d£ . /dn/dr\ 
dr  \dm/dr/ 

and r 

with ty(s) = A(s)<J>(s).  Thus a solution to our original equations 

is a 4» satisfying (8). 

The solution <$>  may be obtained using the method of succes- 

sive approximations.  For this let 

•0<r) = C , (9) 

and define <J>.(r) recursively by 

<J>.+1|(r) = C +/A(S)<J>. (s) ds ,   j = 0,1,2,     (10) 

R 
o 

The following lemma is the key step in showing that the 

( )» sequence ;<f>.J    converges to a solution $. 
/ Db = o 

Lemma:       Let 

K(r) =/°[^^] ds, 0 <_ r <_ R  .   (11) 
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then 

<|>j(r) - •j„1(*)| < 
K(r) 
IT 3 = 1>2>3,..., 

where 

(ai'a2) *il + l*j 

The lemma is proved by fairly straightforward induction, using 

integration by parts. 

Theorem   2 

The approximations <f>, given by (10) converge uniformly 

to the solution $ of (8) in the norm given by 

(Va2' •xl + 1*2 
That is, given e >c , there exists a k such that 

|n, (r) - n(r)| + |m, (r) - m(r)| < e ,  0 < r < R  , 

where <j>(r) = (n(r),m(r)) solves (1) and (2).  Furthermore, 

,r3 
,(r) - <j>(r) < Ej(r)  , (12) 

where 

E.(r) = (N + (13) 

with K(r) given by (11). 
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This is a direct consequence of the lemma, using the power 

series expansion of e and the Cauchy convergence criterion. 

• 

Theorem Z 
For each j, the maximum value on [ 0,R 1 for the 

error bound (£.) on the approximation <P • occurs at r 

= 0.  furthermore, E.(r) increases as r decreases. 

This observation is proved from the positiveness of ex, 

3, and v. 

The approximations <J>k(r) are most easily expressed in terms 

of the following quantities: 

Il(r) ' i    —v" ds ; 

R. 
X2(r) =/ ~ 

R 

ds ; 

I12(r) = / 

R_ 

o(s) 
v *2 lAs)  ds; I21(r) =/ fi(Vlll(8) ds ' 

I121(r) = / 

R. 

r .. / % T   /N   i»3(s)-,N 

Ii2:.2(r) = / 
R 

0<8) 3(s) I212(s) ds ;   I2121(D •- f   -^I121(s) ds ; 

It should bo  clear how to define I,   . ''or  any sequence of 

l's and 2's with the l's and 2's alternating. 
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Remark:     Since a(r), $(r), v > 0, and since r < R , 

I-(r), I0(r), I,01(r), I0,„<r), ... < 0 , 

I10(r), Ion(r), I1010(r), I0,0,(r), ... > 0 12 21 1212 2121 

Theorem  4 

The approximation <f>k(r) as given by (10) has the 

form 

>hk(r)\ /N+MI.Cr) •  ... • C^CrA 

k \mk(r7 V   +  NI2(r)  +   "•   +  DkIt   (r)/  * 

(14) 

where 

k 

N,  k even 

» 

M,  k odd 

N, k odd 

M,  k even 

121   ...   121    k odd 

k-integers ; 

121  ..,212    k even 

212   ...   212     k odd 

k-integers 

212 ... 121 k even 

i 

i 
T 

The proof of this transformation is by straightforward induction.  * 
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Remark:    The first several approximations are given below 

explicitly.  The alternating nature of ths approximations 

is emphasized by introducing the absolute value of the inte- 

grals : 

n1(r) = N - M |I1(r) 

m2(r) = K - N |I2<r) 

n2(r) = N - M | I^Cr) |. + N |I12(r)j 

m2(r) = M - N |I2(r)| + M |l21(r)| 

n3(r)  = N - M   | I^Cr)]   +  N   |l12(r)|   - M   |I121(r)| 

m3(r)  =M   -  N  |l2(r)|   * M   |I21(D|   -  N   |ln2<r)|    • 

A restatement of theorem 2 in these terms is as follows: 

Theorem  5 

The solutions n(r) and m(r)  to  CD and   (2)  have  the 

alternating series representation. 

n(r)  = N +MI1(r)  + NI12(r)  + MI121(r)  +  NI1212(r)  +   ... 

(15) 

m(r)  =M   + NI2(r)  + MIn(r)  + MI212(r)  
+MI

2i2l(r)  +     

Further theorems which may be obtained by straightforward 

manipulation include: 

- * 
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(1)    Theorem 6 

if /o ÄÜ2 < i and /o lisL ds < x f 

* r 

then for r fixed but arbitrary, ü < ~ < R 
—      —    o   ' 

IVr)| >   |i12(r)|  >  |im(r),  „  |im2(r)| >  ... 

|I2(r)|  >   |ln(P)|  >   |l2a2(r)|  >   |l2121(r)|  >   ... 

(2) Theorem   7 

R   i   x R >o a(s) J_. . .   . £ 

0 0 

Suppose /° «Jl> ds < x and f'U&toKl. 

•• 

- 
If M = N, then any of the following conditions guarantees 
that n(r) vanishes on C0,RÄ): 

(a) 1 + Ia(0) • I12(0) < 0 ; 

(b) 1 • I1(0) + I12
(0) + Ii21(0) + I1212(0) - ° ; 

(c) 1 *  I1(0) + I12<0) + I12i
(0> * I1212(0) * I12121(0) 

+ I121212(0) 1 ° • 

Remark:  The above conditions (a), (b), KC)  get successive- 
ly weaker, i.e., (a) implies (b) but (b) does not neces- 
sarily imply (a), etc. 

i 
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(3) Theorem 3 
Let A, 0 < A < l. be specified, and let r,, 0 < r.   *. R , 

be given.  If the parameters ci(r), $(r), N, M, v are chos- 

en in such a way that 

then 

n. (r,) = Am. (r1) » 

n(rx) - AmCr^l < E. (r^ , 

(16) 

where E. (r) is given by (13) and (n(r), m(r)) is the so- 

lution to (1) and (2). 

» 

: ii 

(4)     Theorem  9 
Let A  >   0 

= Am(r) if, and only if, 
Let A  >   0 be given and  fix reC0,R  3.     Then n(r) o 

Nil - \f 0(&)d8 • \j    J       a(s2)3(s1)ds1ds2 

^ *o Ro    Ro 

A 
1 (tf 
\   K     K o      o        o 

ß(s3)a(s2)ß(s1)d31ds2ds3 

-mr- (s1+)B(s3)a(s2)3(s1)ds1ds2ds3dsl4 

o    o      o     o 

] 



= to  X- \ j    a(s) eis + \  j j       e(s2)a(s1)ds]ds2 

L    o o o 

•   i f h f1 
 j /  /  /   ä(s3)3(s2)a(s1)ds1ds2ds3 

o o  o 

+ -^ / J    J     J        B(su)a(s3)3(s2)a(s1)ds1ds2ds3dsu 

• • • i  • 

For the remainder of this section we shall consider the 

linear attrition-rate functions given by (3) and (4) such that 

R < RQ . To simplify the approximations, we shall later 
a    p 

set R^ = R„ . o   a 

In order to simplify the calculations, perform the 

transformation 

r •* r = r - R o 

Under this transformation equation 10, which recursively defines 

the approximations, assumes the form 

(nk(r)\     /i<\      -r  /0 Ka(&a-s)/v\ /n]c.1(8)\ 

mvtf>/    W^O    WVS)/V VIVV1' 

i* 

-» 

. 

i! 
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where -R < £ < 0, R = R - R , R = R« - R  .  The ap- o -  -   a   a   o' $   0   o       * 

proximations n,(r), n2(r),...,nß(r) are given explicitly in 

Appendix C, 4, 1.  They are obtained from n^(r) by replacing r with 

r - R .  It is easily seen that m, (r) is obtained fron n,.(r) 
O K /v 

by replacing in n. (r), N with M , M with 'I, !"< witji K0 , K. 
% ~ * a      3  5 

with R , K with Kn, K with K  . 
a' a      0  ;      a 
From theorem 2, we hay. two theorems: 

Theorem 10 
Let the parameters R , R , K , etc., be such that 

ex  p  ex 
any one of the following conditions is satisfied.  Then 

n(r) must vanish on [O.R^J. 9  o 

n1(0) + E1(0) < 0 , 

n2(0) + E2(0) < 0 , (17) 

n3(0) + E3(0) < 0 

Theorem  11 

Let the parameters R , Rfl, K , etc., be chosen so 
ex   p   CX 

that any one of the following conditions is satisfied. 

Then n(r) cannot vanish on [0,R ] . o 

nx(0) - E1(0) > 0 , 

n2(0) - E2(0) > 0 , (18) 

n3C0) - E3(0) > 0 , 
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. 

where 

Ek(r)  =   (N + M) Texp K(r) -   J. lK[]ni] 
(19) 

and 

K(r) _ 1 
15 (R - r) [K (2R - a  a 

r - V + V2Re 

- r - R I 
(20) 

The functions n.(r) are found in Appendix C, U, 1. 

The equations that follow give conditions under which 

for specified X > 0, 

n2(0) = Xm2(0) , 

nu(0) = Xmu(0) , 

nß(0) = Xm6(0) , 

in the case R = R  (which implies that R^ = 0 and RQ = Rfl o   a                 '* p   p 
- R ).  These conditions are given below. They are obtained 

a 
by equating n.(r) with Xm, (r), setting r = 0, and rearranging 

terms. 

Condition A:     ng(0)  « *m2<U) .  CRß = R$ - R^ • 

|/K K0R0R
3   K KQR

4
\   / % KR2\     J 

N^ * -V"4)* x(VaV "V Jv + v J 
1    /*  K0R0R3       K K0RH\        /K R2\ A 

! 

.-     ! 

. 

. 

. 

I 

» » 
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. 

Condition 3:     nA(0)  « \mA(0), 
4 4 

N 
7T- .      güB      * —afir- 

+  x 
12 120'" —Iff— 

vai + w: 

p   P   a 2 v3  .   »» 

30        T      5|— 

"I 
!   K K0R„R3       K K.R 2_g_|_a +  VVV 2 

8 

K R' 
+    i. a a 

v3
+Xv" ] 
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Condition Ct     no(0)  = \m„(0). o o 

« 

N 

3   i%3   g q   0^2   in 
ICiCR^R 17.}CK^R1U 

£L±JLä  t a   ß   3  a     + 
23*3U.7 2   -32-52-7 

211-KdKflR0R11 

ot 3  3 a    4. -~— + 
2   -3   -5-11-7 12-10«8«6«4»2 

4W2 

+  A 

? i^a 7 ,2„322»8 17'KtK"R:R' 
a Bl a + aß ß g + 

23»32-7        21+*32-5-7 

211M^K|R^ 

27-33-5»7 

KgK3Rg 

10*8-6-4«2 

K2K2
0R

2R6 

a 6 a g 
ll'K2K2£rtR

7       X2K2R8 

-, O fi a +   a S g 
2-3*5 8*6*»**2 

' 

2^2   4 11-K K2ft R5       K K2R6 

+ . ftfi S a +   g a g 
2*3*5 6*4*2 

2 O g +   g ß g 
3 8 

v11   *>   X K   ft  R   •   -Ä-fl { v5   +   V6 

3 ß g      2 

j 

J 

= M 
ICK:R:R* 

3 3*v»9 i n 
o o    47*KJK0R;R

1U   271 
a.ß ß a +   a ß_ß a   + 

*K3K3* 

25*34*5 26*33*52*7 

,11 
UBfl K3K3R12 

g S g 
28*33*5*7*11    12*10*8*6*l**2 

X3K2R2P8   13'K3K2RrtR
9  K3K2R10 

a ß 6 a +       a ß fi a +   a 6 a 
25*32*5 2*4*33*5*7 10*8*6*4*2 

•   A 
K2K2fc2R6       i3.K2K2V       K2K2R8 

2.3.5 2   • 3*5-7 8« 6. Ift« 2 

III 
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lCKflRQRD       irKJR 
a 3  3 ex +    a  S a 

30 148 

+ X 
K  KJLR3       K K0RH 

g  3  3 a +    a 3 a 
6 8 

,  K R? 

v4   +    >     a   a 5       ,      6 
V      +   A   V 

i      • 

Theorem  12 

Let  X  satisfy  0 < X  <  1.     If  the parameters  K  , 

K.,   R   ,  RoJ  v,   N,  M are  such that 
p     g      p 

(a) Condition A holds, then 

|n(C) - Xm(0)| < E,(0) ; 

(b) Condition B holds, then 

|n(0) - Xm(0)j < E^CO) ; 

(c) Condition C holds, then 

|n(0) - Xm(0)| < E-(0) , 

where E. is defined from (19). 

A restatement of theorem 9 gives 

Theorem  13 

Let >. > 0 be given, and fix rc[0,R ).  Then n(r) 

= Xm(r) if, and only if, the parameters K , K , R , R,, 

v, N, M are chosen so that the following holds: 



V^IlT-f^-n «>«a  -  »M.x) 
0     0        0 0 

3I)d«1d82...dS2j 

J  J v i)    o o -n       Rß   "   S2j-])(Ra   "   S2^}   "• 

= M 

(Rß - s^ds^..^^ 

[••*%*7/V 0     0        1) 
%   -   S2j)(l   *   S2i-J> 

(R3-s2)(Ra-Sl)dsr..ds2. 
2j 

J 0     0 0 

; 

i 
! 

! 

<Ra   -   •x)dS1d«r..dS2j.1 . 

In  the  above  r  =   r  -   R   ,   R     =R     -   R   ,   R„ 
o      o        a 0      0 =  R

0  -  K ß o 

• • 
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f ,; 

4, 2    Power-Series Approach 

As shown in Chapter 2, consideration of equations 1 and 2 

under a constant assault speed (to = — ~ » 0) can be combined r v dr 

to produce the following second-order linear differential 

equation for n(r) 

d2n (l  da\ dn  /a(r)B(r)\ 
dr2 * ^a dr,/ dr " ^  v2 )  R " 

(21) 

subject to the initial conditions n(R ) = ft and 

Hr      <*<Rn) *L(R ) =  2_ 
dr o     v M , (22) 

where v is a positive constant and a(r) and ß(r) are non- 

negative functions on [0, R ].  It is now useful to assume that 

a(r), ß(r)eC C(0,R )].  This Cauchy problem was studied for the 

linear attrition-rate functions given by (3) and (4). 

The specific case studied assumed R = R < Rrt and K > K,. 

Employing these attrition-rate functions, the Cauchy problem 

assumes the form 

d2n + /  1 \dn  WR« K K„(R - r)(R. - r) 
5 2  n = 0   (23) 

n(R ) = N o 

! 

er c 

K (R - R ) 
a a   o M (24) 
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Note that (23) has a singularity at R = R  .  A solution 
o   o 

is found in a neighborhood of r = R using the method of 

Frobenius (Coddington, 1955).  The solution obtained by 

this method has the form 

n(r) = CjfCr - R ) • c2v(r - RQ ) ,        (25) 

where c, and c« are determined so that (24) holds 

The functions 

-vsS>3 
$(r   -   K   )   =   £^ b, iv -  R   )3*2 

and 

Y(r      Ra)  =  1 +  fa a^(r - Rft)
j   . 

The coefficients b. are given by 

K2 bQ «lj b = 0; b2 = 0; bj = ^ 

b , Vj-3 - Klbj-H   .-„C6 D. -    f(j + 2)    •  J    H , & , Ö , . . . > 

where 

Ki= K«K$ 

K2 = WRa " V 

- p 
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ftt ) - X     - ?A  , 

while the coefficients a. are given by 

a. -  „ICO) , 

where 

ga =0;  g2 = 0; g3U) = K?A/f(A + 3); 

gu<A) = 
K.A 

f(A f 4)  • 

K0d. q + K,d. ü 

Note that a power-series expansion can be obtained for m(r) 

following the same procedure. The chief difference is that 

the expansion will be around Rft rather than R  . 

The Cauchy problem noted above can be converted to a 

useful dimensionless form by letting 

y =  n/N 

x  =  m/M 

Y =   (R   - r)\/K K./v* a *  a  8 

P     s   (R0  -  R   ) JK Kö/V?     . A 3 a    *   a  3 

(26) 

(27) 

(28) 

(29) 



—•»—-»—— —"'   » ' • •IP   I» II ••> ^» «MM^I^^MH 

2G8 

Then 

* 
I dn 
N 37 

1 dr cln 
N dY dr 

r 

•if-V^f-X-*».] (30) 

'l^Th    YX 

<f>Yx 

by letting  $  = M/3T/N/IT  . 

dx    _  1 dm „  1 dr dm 
3Y M HY  " f dY  dr 

i 

6(RB - Rc » R« - r) 

(*)»] 

-  N1T£ ü R 

.Vyyy2   Vv<j /v 
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•-*te)(^'- 

I^^.T», 

f (RA 
+ Y) y • (31) 

Thus, the solution to equations 1 and 2 with a constant assault 

speed and linear attrition-rate functions can be obtained from 

the solution of (30) and (31) with initial conditions that, at 

Y = 0(r = R=R),x=l and y = 1.  The Cauchy problem is 
o   a 

obtained directly from (30) and (31).  From (30) 

1 dy _ 
" ff ay -  x • 

which, when substituted in (31)> becomes 

dD If] 

Differentiating again, 

*t»'-«f^-'H-'"-' 
or 

if 
dY 
y-JS-t<\ •*>*•• , (32) 
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•IT M = /Kl N <fr 
a      p 

and 

% -R 

Thus we see how M, v, K , and R can be traded off to obtain 

a specific final result. 

d2w 

which is readily solved by the method of Frobenius described 

at the beginning of this section. 

We note that the dimensionless parameters R^ and $ com- 

pletely characterize the solution and can be used to show the 

trade-off among relevant parameters.  If we assume that N, 

Rß, and Kfi are given and fixed, sr.d if the solution is to remain   j 

unchanged (i.e., RÄ and • are fixed)» we must have 

r 

i 
i 

i 
i 

4.3    Comparison Techniques I 

One method of obtaining information about the solutions 

n(r) and m(r) to (1) and (2) is to use comparison techniques. 

To see the principle involved, consider the equations 

i 

2-5J + R(r)w = 0  , (33) 

H 2 
^-4 + q(r)z = 0  . (314) 
dfr '! 

ü : 

D 
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The following theorem relates solutions of (33) and (34): 

Theorem  14 
Suppose w(r) is a solution to (33) and z(r) is a 

solution to (34) which satisfy w(R ) < z(R ) and w'(R ) 
o —   o        o 

> z'(R0).  If R(r) > Q(r) on [0,Ro], then z(r) > w(r), 

so long as both functions are positive. 

In order to apply this theorem first note that the second 

order differential equation 21 can be written in the form 

where 

2 
d n ,   , * dn ,   , N —j • ax(r) ^ • aQ(r)n 

n , x _ -1 da a, (r; = — -y— 
1     a dr 

= 0, (35) 

: i a (r) = ^llMLi    . 
0        v2 

(36) 

Perform the transformation 

w(r) = n(r) exp 
L R_        J 

(37) 

to put (35) into the form (33), i.e., equation 35 assumes 

the form 

d2w 

dr 
~j + R(r)w = 0 , 
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where 

R(r) = a Cr) - o 

[a1(r)] 1 da1(r) 

2 or (38) 
: 

From (37) it follows that n(r) vanishes if, and only if, 

w(r) vanishes. Thus, to determine whera n(r) vanishes, it 

suffices to determine where w(r) vanishes. But from theorem 

14 it is seen that if z(r) is a known function which vanishes 

on tO,RQ3 and satisfies (34) for some function Q(r). Then, a 

sufficient condition for n(r) to vanish is given by Q(r) < R(r), 

where R(r) is given by (38). It is desirable to make the differ- 

ence R(r) - Q(r) as small as possible, for doing this reduces 

the quantity z(r) - w(r) thus giving better control on the zeros 

of n(r). it  turned out in practice to be difficult to find 

meaningful conditions using this approach. 

Another comparison approach utilizes the ratio 

p(r) = n(r)/m(r) , 

which from (1) and (2) satisfies the Riccati equation 

; 

•• 

i 
i 
i 

• 

$ = i Ca(r) - BCD p2(r)3 (39) 

for constant assault speed v. 

Note that if a known function h(r) satisfies h(0) = 0 , 

h(RQ) = N/M, 

h'(P0) < Pf(R0) •»[• (Re) - 0(RO) N
21 

The reader is cautioned that this ratio is the reciprocal of 
that used in Chapter 3. 

.. 

. 



 .  

' 

273 

then a sufficient condition for n(r) to vanish is that p(r) 

< h(r), 0 £ r < R .  This approach was carried out for 

Mr) = R 

0 
and yielded the following result for linear attrition-rate 

functions a(r) = K(R„ - r), S(r) = Kfl(R& - r). 

Theorem  2 5 

Let R  < 4 Ro> and let O   op 

dF (Ro)  T  

Then n(r) vanishes. 

4.4 Method of Quasi-Linearization 

As mentioned above» the function P(r) = n(r)/m(r) satisfies 

the Riccati equation 39.  A solution to (39) is desired 

which satisfies the initial conditions p(R ) = N/M.  The 
o 

method of quasi-linearization obtains a closed-form solution 

2 2 
by "linearizing" the p term, i.e., by replacing P with 

m*£}(2up- u
2), where u<r)Ep([0,R ]). 

The following theorem gives a representation for P(r) = 

n(r)/m(r) in the case a(r) and 8(r) are both linear. 

Theorem  16 

Let a(r) = Ka<Ra - r) and $(r) = Kß(Rg - r).  Then 

u 
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the initial value problem (39) for r < R has the solution 

R 
p(r)   S  ulr)   [x**p\f  *<CW 

R 
•° r  n K  K, 

~   / nr V    c Ju2(s)  + "T* (R„ -  s)(Rfi -  s)l J    K6(r8 - s)L v2       a ß J 

s 
8   exp  1     /     ?u(UdU  ds  I   . (no) |  j  2u(C)dd ds 

r J 

Corollary 

A necessary condition for  n to vanish on  [0,R   j   is 

s^W.-^)] • 
In order to obtain information about p(r) as given by 

(40), it is desirable to have a sequence of approximations. 

i 

.2 

i 

Theorem  17 

Let p(r) be the solution to (39).  Let 

, , * . 3(r) N ho(r) " V-H • 

and define h , n >^ 1, recursively by 

hn ' hn-l " 2hn-l hn " P(r) V <J(r) ' 



— 275 

where 

p(r)   = 

q(r)   = 

S'(r) 
STrT 

a(r)ß(r) 

Let 

pn(r)   = ,r)     n 

Then  for   0  <   r  <   R     , 

and 

P1(r) £ p2(r) £  . . .   <^ p(r) 

liiil r    \ e    \ 

where the convergence is uniform. 

4.5    Evaluation of  the  Different Approaches 

In this section the different approaches outlined above are 

discussed to indicate their respective advantages and dis- 

advantages«  By far the most valuable approach to the homogeneous 

force model utilizes the method of successive approximations. 

Except for certain opecial cases, a(r) and 0(r) will be such that 

a series solution to (1) and (2) is readily obtainable.  The 

method of successive approximations yields a series which has 

the advantage that each additional term is easily derived from 

the preceding one.  The series is such that consecutive terms 

have alternating signs.  Further, there is no need to assume 
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anything about a(r) and ß(r) other than continuity.  In fact, 

•i .   '.'.   .eer. iror. ^x^y.Lr.ir.g  "he tecr.r.ique described ir. Sisvtwn*. 

*+.l, it is not necessary tc assume that v is a constant, i.e., 

it is possible to suppose only that v is a non-negative continuous 

function. 

The approximations to n(r) and m(r) are obtained by 

considering the partial sums.  These functions are made es- 

pecially valuable because of the existence of the error bounds 

E.(r).  Using the error bounds and the approximations, it is 

possible to derive conditions under which, for r,e[C,R ], 

n(r,) = Xm(r,), X > 0, with a known error bound.  Also, condi- 

tions are available which guarantee that n(r) vanishes. 

These conditions can be made as weak as desired, i.e., given 

any e > C, a condition can be found which guarantees that 

n(r) > 0 on [e,R3 tut n(0) < 0. 

Perhaps the most valuable aspect of this method is that it 

not only treats general a(r) and $(r) but also can be used to 

study the variable-coefficient heterogeneous-force models. 

This is because the approach can handle any equation of the 

form 

<|>(r) = 
/•l(r)\ 

Vn<r>/ 

V where 

f 
i 
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' i 

and A is a continuous n x n matrix. An error bound is available 

in this case and is similar in form to that for the homogeneous 

case. 

Finally, the approximations are such that they can be eas- 

ily programmed.  When a(r) and &(r)  are both linear, there is ar> 

algorithm suitable for computer use, which can calculate the 

n  term in the series from the (n-1) term. 

Several charts are given in Appendix C, 4, 2 which give an 

idea of the accuracy of the various approximations for different 

values of the parameters when a(r) =K(R - r) and $(r) - 
a a 

Ko (R« - r)*  Using the analog-derived solutions presented 

in the next chapter, it is seen that interesting behavior of 

the solution (n(r), m(r)) is encountered for those values of 

the parameters for which (nß(r), mg(r)) givt a "good" approxi- 

mation to the solution.  Thus the analog solutions can be used 

to see what values of the parameters are needed to induce 

significant changes in The behavior of the solution (n(r), m(r)). 

Then, using the charts found in Appendix C, 4, 2, it is possible 

to find how many approximations are needed to get an error bound 

that is sufficiently small. 

The most elementary method considered, the power-series 

technique of Frobenius, is fine from a theoretical point of view 

in that it gives a solution defined for all r.  However, a good 

error bound for the approximations to n(r) obtained by consider- 

ing the partial sums is not now available, and any application 

using the power-series solution would have to work with the 
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partial sums.  Computer tests for the rapidity of convergence     — 

are of no use, for it is easy to construct examples of power 

series that seem to converge rapidly for the first n terms only 

to diverge eventually.  A more serious drawback to this approach 

lies in the fact that the power series for m(r) is taken about 

R , while that for n(r) is taken about Ra.  If Ra i  Rg, then it 

is difficult to compare n(r) and m(r) to obtain conditions un- 

der which they are equal, etc.  Finally, the solution (25) 

cannot be easily modified to accommodate other than linear 

a(r) and ß(r). 

The comparison techniques developed in Section 4.3 have the 

potential of being quite useful.  Using theorem 14, it is 

possible, in theory at least, to find functions u,(r) and C-(r) 

such that 

JU(r) <_  n(r) <_ u, (r) 

and functions u2(r) and £„(r) such that 

JU(r) £ m(r) <  u2(r) . g 

If the quantities u^Cr) - £-(r) and u2(r) - ^^ are "small," then 

a very good idea of the behavior of n(r) and m(r) is available. 

The difficulty, of course, is to determine the functions 

£,(r), Ijlr),   u,(r), u«(r).  Finding them is not easy, for a 

relationship of the form R(r) > Q(r) must hold on [0,Ro3» 

where tne significance of R and Q is given in [4.3].  However, 

for crrtain a(r) and 0(r) finding the comparison functions u,(r), 

i 

L 
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etc., might not be too difficult.  Otherwise, considerable 

ingenuity is apparently required to find "good" bounds u,(r), 

u2(r), etc. 

It will be recalled that the second comparison technique 

described in [4.3] utilized the ratio P(r) = n(r)/m(r).  By 

working with the "bounding" function 

POL) 
h(r) = 

a rather strong condition was found which guarantees that n(.?) 

vanishes (theorem 15).  In order to obtain weaker conditions, 

functions of the form 

V*> = H fe) 

1/n 

n an integer, were considered, but no results were obtained. 

Considering other forms for h(r) also proved to be fruitless. 

The method of quasi-linearization, considered the ratio 

p(r) = n(r)/m(r). The reason for examining this ratio is that 

it provides good information about the relative changes in 

n(r) and m(r) as r decreases from R to 0.  For example, if 

p(r) increases as r decreases from R to 0, then Red (n) is 

"defeating" Blue(m).  That is, n is decreasing less rapidly 

than m.  The advantage of the method of quasi-linearization is 

that it gives a closed-form solution to the Riccati equation 

39.  The difficulty, of course, is to find a function u(r) 
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which maximizes (40), or at least find a u(r) which "comes 

close" to attaining the maximum. One approach is to find a 

sequence of approximations to the expression given by (40). 

Theorem 17 gives such a sequence and one which is monotone 

and uniformly convergent.  However, the approximations become 

rather involved and, hence, are not of ton much use in practice. 

Another way to find a maximizing u(r) is to use a variational 

calculus approach (see Gelfand and Fomin, 1963). However, 

this approach was not successful, chiefly because of the "there 

exists" nature of the theorems in this approach. 

4.6    Research Directions 

By far the most promising approach to the homogeneous 

Lanchester problem utilizes the method of successive approx- 

imations . Thus, it is natural to expect that further research 

would involve this technique. One of the first things to consi- 

der is how to improve the error bound E. (r) in the case where ci(r 

and $(r) are both linear.  This error bound is valid for very 

general a(r) and 8(r), and its value in the linear case in no 

way uses the linearity of the functions ot(r) and $(r). Thus, 

it is natural to expect that a better error bound exists. 

Notice that the series representations (15) for the solution 

(n(r), n(r)) are such that the signs of consecutive terms al- 

ternate. If a condition can be found which guarantees that 

after the k  term of the series representation, the "tail" of 

!" 

: 

« 

n 
i: 

D 

;: 

I. 
44 

it 

*li 
o 

i 
u 
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n(r) becomes an alternating series (i.e., consecutive terms 

decrease in magnitude as well as have alternating signs), 

then the error in the partial sum n,(r) is no more than the ab- 

solute value of the last term (i.e., the (k + 2) term) of n^+1. 

Probably this is the best error bound that can be hoped for, and 

it is definitely worthwhile attempting to find conditions which 

force the "tail" to become alternating.  The difficulty is that 

for certain interesting cases of a(r) and &(.r)9   the tail may not 

become an alternating series.  In this case other error bounds, 

such as E.(r), will have to be used. 

Another research direction would be to find a(r) and $(r) 

such that the series solution (15) turned out to be the series 

representation of a known function.  There is no guarantee that 

there are "interesting" a(r) and ß(r) for which this is the 

case, but for the more realistic <x(r) and ß(r) \his should at 

least be considered.  This was attempted in the case ^here a(r) 

and ß(r) were both linear using the approximations n,(r), n?(r), 

..., Hg(r) found in Appendix C, 4, 1.  The approach.was to see if 

partial sums of known special functions (see Rainville, 19fifi) 

corresponded to the approximations n.(r).  This initial investiga- 

tion was not fruitful, but it probably would be worthwhile to 

pursue the approach somewhat further. 

Another area of research that should be of great interest 

and value would be to study the solutions using the approximations 

(n, (r), m, (r)) in the case v is a positive function on [0,R ]. 
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From the form of the series solution (15) together with its 

derivation it is se^en that it is not at all necessary for v to 

be constant. Once this restriction is removed, it is possible 

to investigate the problem:  Given a(r) and &(r), as the combat 

evolves how should v vary so as to maximize the quantity 

mk(r) - n^Cr). 

Finally the method of successive approximations can be 

used to study the heterogeneous-force case with variable co- 

efficients. To see the principle involved, let 

Cl(r>\ 

n(r)/ 

and let A(r) be a continuous n x n matrix. Then the system of 

differential equations 

|f »*<*>• 

can be examined using the method of successive approximations 

just as in the 2x2 case. If 

R »o 
K(r) - f        5j  |'ai. (s)|ds, 0 < r < RQ 

r  lli>J£n 
. 

then the solution f(r) and the approximations $.(r) are related 

by • 

I) Mr) - <J><r)|| < E^Cr) , 



1 
n 

i 
n 
D 
D 
n 

?83 

• 

where 

Ej(r) = 

n r 
i=l •i<V exp K(r)  - t 

£=0 

CK(r)]£ 

—n— 

Thus, as in the homogeneous case, a method is available to study 

the variable-coefficient, heterogeneous-force case in detail. 
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Appendix C, u, i 

SUCCESSIVE APPROXIMATIONS FOR LINEAR 
ATTRITION-RATE FUNCTIONS 

Donald Ballou 

• 

The approximations n,(r), n0(r),...,nc(r) to the solution x i. o 

n(r) of theorems 10 and 11 in the text are given below expli- 

citly. It can be shown that n, and n, +, agree through terms 

of order (r - R ) . Also, n, is a polynomial in (r - R ), with 

2k * 
(r - R )  being the highest order term. Recall that R    = 

R - R and Rö = Rfl - R .  In the applications we set R = ex o »  a 
R to simplify the results, such as Conditions A, B, C. If 

further approximations are desired, n-(r) is obtained using 

equation 10 and the function m-(r). As mentioned in the text, 

m, (r) is obtained from n,(r) by replacing M with N, N with M, 

R    with R0, Rfl with R . K with K0, and Kfl with 1C. a      p  p      a  a      p      p      a 

The approximation nAr)'> 

K ?! M 
ni(r) = N • -2LJ2L, (r 

•• 

i 

i 
i 

The approximation nAr)        IR^ = Rä - R^; R0 = Rfl - R a " "a  "o' "$  "0  "o ]> 
K R M I K KflR  R0 

n2(r)  = N • AL (r - RQ) • |   8Lfc| I m. y 1 (r - R  ) o 

oontinued 

D 
i! 
D 
li 
I 

' 
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n 
17~ (r - V 

I 

.1 w 
8v 

(r - V 

i 
The approximation n2(r)' 

KR M 
n   (r)  = N +    a a   (r -  R   )  + o V o 

^ 

K K.R  R0N       K M 
a  3 a  $ a 

2v 2v (r  -   R   ) o 

*V      -i 

6v3 6v2 3v2 
(r -  R   ) o 

D 

;J 

 5 5— +   fi- 
6v* 12v 8vZ 

(r -  R   ) o 

% 
11«K2K0R M       K2K0R0M 

a 6 a    +    a ß ß 

120v3 30v 
(r - P  ) o 

2        "* 

-H- 48vd J' r - V 

ZTie approximation n.(r): 

. 

n^Cr)  = N + 
K R a a M 

V 
• 

(r - R  ) + o 

K K0R R„N       K M 
a  ß a ß a 

2v2 2V 
(r - V 

6v3 6v2 3v2 
(r  -  R   ) o 

continued 
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L    24vU 

r\,    r\j 

i?— 

D 
I 

a IOC^M 

12v 
T 77~ (r - V 

2   2^2 
a  B a 8 

2   2^ ^2 

30v 20v T 

1MCK.R M a  ß g 

120v3 30v3 
(r - Ro) 

31- KfKfR ILK 

16*U5v 180v 72v 

I 
I 
I 
I 
I 

48v3 
(r - V 

2   2^ 13-1TK R N a 0 g 

35*U8v 

lLKa
2K$

2R3N 

ri20v 
(r -  R  ) o 

*  2   2 

8« U8v 
(r - R  )• 

1. 
r 
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"' 

•* 

I 

n 
• I 

ft 

. i 

U 

\ 

The approximation  nc(r): 
5 

K R M 
n5(r)  =  N + JUL.  (r ..  RQ)  + 

2,. ^2? 

0,    ^j 

-ft  p a  6 a 

2v 2v (r  -  R   ) 
o 

^     -» 

5 2  ~  
6v 3v" 6v 

'  2  2^9 

2Uv4 

KaKBl3fr 
120v5 

(r -  R   ) 
o 

•\/    'V, 

WaRBM 

6v3 

30v' 

2    ^9 W 
12v3 

2   2^ ^2 

20v 

a   3 

8v2 
(r -  R   ) 

11«K%R M 
+ ex  ß a 

120v3 
30v3 

(r -  R   ) 
o 

^K|R2R.2M ..ax;. 
L    80v 

3   9U 1% 

K«KgRaV 
120v5 

20 '36V1* 

2   2^9 

180V1* 

2   2^9 

72v^ 48v3 
(r - V 

37.5.7v5 
2   -3   • 5v 93   .2   „   5 2   »3   * 7v 

continued 

\ 
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~~4 4 2  •3,5#7v 

2   2"«       ( 

3*3'5'7v5 j 
(r  -  R0) 

-?-K„K|RaRgM 

32,5-7v5 

17 <«K» 
24'5'7*9v5 

KqK2
ßR

2
ßM K|K|K 

25-32'5vb       27*3vU 
<v - RO) 

211. K3K2ft M       13. K KhaM 

2'. 3°. 5. 7vD       2.3.5. 7v 
(r -  R   ) 

o 

-K3K2M 

2°. 3. 5v 5 (r -  R   ) o 
10 

The approximation n$(r) •' 

n6(D 

% 
K R M 

"   N  •  -V-  (r - v KaK3RaR3N KaM 

2v (r - R  ) 0 2 
L    2v 

+ 
Ka-KgRa%M KaKgRaN      l^KgRgN 

6v2                 3v2     . 
(r -  R   )3 

0 6v3 

.; 

1 
1 
1 
1 
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Ka
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2U.32.5v4 
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-K^KHrRTN 
a ß a  B 

24- 5. Tv* 

K3K3R2R3N 
a  g a  g       + 9 r       r—g + 

2 • 3- 5« 7v 
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q    q ^9 0*9 
13* KdK0

dR^R;N 
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26.32.7v6 

3   3'v'3'x' 
ICICVR.N 
a   O   ß.   + 

25.32.5v6 
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Appendix C, W, 2 

ACCURACY OF THE SUCCESSIVE APPROXIMATIONS APPROACH 

Donald Ballou 

In order to obtain some idea of the accuracy of a given 

approximation in the case a(r) = K (R - r) and $(r) = 

K (R - r), the following sets of charts were developed. 

Chart 1 gives the bound on the error in the quantity 

n(0) - nk(0)| + |m(0) - mk(0) 

provided N + M = 100.  That is, the number P.. in the i  row 

and j  column of Chart 1 is such that 

n(0) - 1^(0)1 + |m(0) - m.(0)| < Pr 

.i 

o 
1 

whenever the parameters are such that 

R 
K(0 } r -57 CW V2R3 * V3 i '8 + ^  " 1)('25) 

and N + M = 100.  If N+ M = C, then 

|n(0) - n..(0)| + |m(0) - mi(0)| < Pij TTO • 

Charts 2, 3, and k  give K(0)«v for different values of the 

parameters K , Kg, R , Rß.  Thus, if Ra = 2000 meters and Rß = 

3000 meters, then for K = 10 x 10"6 and Kfl = 3 x 10"6, 
a $ • 

K(0)«v = 32, which implies that K(0) < 2 if v > 16 .  Hence, 

from Chart 1 
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|n2(0) - n(0)| + |m2(0) - m(0)! < 239 ; 

|n5(0) - n(0)| + |m5(0) - m(0)| < 12.2 ; 

|n8(0) - n(0)| + |m8(0) - in(0)| < .176 

provided v > 16 and the parameters have the values given 

them above. 
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K(0)  v  *-§ CKaRa   •  Ka(2R3   -  1^)]. 

Cfcar* 2:  Values of K(0).v if Ra = 2000 meters, 
Rg = 3000 meters . 

Ka  >S. 2 x 10* •6 3 x 10" -6 4 x 10"*6 5 x lb"6 

6 x 10"6 20 , 24 28 32 

8 x 10"6 24 28 32 36 

10 x 10"6 28 32 36 40 

12 x 10"6 32 36 40 44 

Chart 5:    Values of K(0)*v if Ra = 2500 meters, 
Rfl = 4000 meters. 

2 x 10"6 3 x 10"6 4 x 10"6 5 x 10"6 

6 x 10"6 32.50 39.38 46.25 53.13 

8 x io"6      ; 38.75 45.63 52.50 59.38 

10 x 10~6 45.00 51.88 58.75 65.63 

12 x 10"6 51.25 58.13 65.00 71.88 

1 
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Cfcar*  4:     Values of K(0).v if R0 =  1000 meters, 

Ro= 1500 meters. 

n 

] 

6 x 10 

8 x 10 -6 

10 x 10 -6 

12 x 10 -6 
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10 
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10 

11 

: ; 

0 
I 

u 

U 

u 
CHW- ^1>—»»-- 



296 

Chapter 5 

D 
!" 

VARIABLE ATTRITION RATES, ANALOG COMPUTER RESULTS 

Vernon Larrowe and Raymond Crabtree 

The previous chapter indicated the difficulties encountered 

in attempting to get closed-form, analytical solutions to the 

coupled differential equations 

§£ = -K.UL - r)m a a 

d? = -Kß(R3 " r)n » 

(1) 

(2) 

where dr/dt = v and 

m = the number of surviving Blue units, 

n * the number of surviving Red units % 

r s the distance between the Red and Blue forces» 

t = the elapsed time since the beginning of battle (t )» 

v = the speed (assumed constant) at which the forces 
reduce the distance, r, between them, 

iL,CRg] 2 the range at which the Blue [Red] forces1 weapons 
first achieve a nonzero attrition rate» 

l^,[Kg3 * the constant rate of change.of the Blue [Red] weapons 
attrition rate. 

Equations 1 and 2 were programmed for solution on an analog 

computer to develop some understanding of the important parame- 

ters and the underlying dynamics of this description of a battle. 

The results of varying parameters of the model such as 

i 
i 
i 
i 
i 
i 
i 
i 
i 
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Kg, R^, Rg, RQ (open-fire range) and the initial numbers of 

forces, M and N, are presented in this chapter.  In all cases, 

except where noted or explicitly varied, R is set equal to 

the larger of R , R .  Since a fairly large number cf curves a  ß 

were obtained, it was useful to arrange them in a logical order 

to explore the behavior of the solutions.  Accordingl>,  each 

curve is given a four-digit "figur>" number, with the digits 

separated by periods.  The significance of each of the digits 

is described below. 

The first digit indicates the basic type of data plotted: 

First Digit 

1 

Type of Data 

Solution of the equations at 
r = 0 

Starting conditions required at r = 
RÄ for a specified outcome at r = 0. o 

The second digit of the figure number indicates the ordinate 

of the curves: 

Second Digit Ordinate 

1 m,n or M,N 

2 (m - n) or CM 

3 m/n or M/N . 

- N) 

The third digit of the figure number denotes the abscissa 

of the curves. 

/ - 



: 

298 

Third Digit Abscissa 

1 V 

2 Ke 
3 R 

a 

U not u^ed 

5 
K 
Jk 
V 

6 
V 

7 - SLJ 
V 

8 
K 
a 

The fourth digit of the figure number indicates the para- 

meter which changes from one curve to the next on the figure: 

Fourth Digit Parameter 

1 V 

2 V       ' 
3 R 

U N 

5 
V 

6 i 
V 

7 
V 

8 \ 
vT 



I ...•-  

•; 

?*in 

n 
.1 

3 

] 

li 
0 

In addition, some figure numbers have a letter as a suffix. 

This letter is used to differentiate between figures whose num- 

bers would be identical otherwise, but in which some quantity 

changes from one figure to the next or the scaling is different. 

Thus, Figures 1.1.1.HA and 1.1.1.4B are families of curves which 

differ only in that in the former, the abscissa, v, goes to 8 0 

meters/second, while in the latter, v only goes to HO meters/ 

second. 

As an example of the figure number coding, consider Fig- 

ure 1.3.2.1. The meanings of the four digits, taken in order, 

are 
Digit 

1 

3 

2 

1 

Meaning 

This is a plot of conditions 
at r = 0 

The ordinate is m(0)/n(0) 

The abscissa is K 
P 

Each curve in this figure is for 
a different value of v. 

u 

D 

The figures are contained in Section 5.3.  A brief discussion of 

some of the interesting results is given in the following two 

sections. 

5.1 Solutions at Range r m  0 

Figures 1.1.1.2 to 1.3.2.1 show the solutions of the equations 

at r « 0 for various conditions.  Figures 1.1,-.-show m(0) and 

n(0), Figures 1.2'.-.-show Cm(0) - n(0)] = d and Figures 1.3.-.- 
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3how m(0)/n(0) = p .  Figures having the same -rdinates were 

grouped together to facilitate comparison. 

Figure 1.1.1.2 shows curves of surviving forces [m(0) and 

n(0)] at r = 0 as a function of closing speed, v. For this 

situation, R < R„, but K > K„ so that the lines a(r) and ß(r) 
et   S      a   3 p 

cross at some value of r between R and 0.  For Figure- 1.1.1.2, 
a 

both M and N (the initial values of m and n) are 100.  The solid 
«s» 

curves are for m and the dashed curves are for n.  Eaci curve is 
<« 

labeled according to the value of K0, which was used in obtaining 
p 

that curve.  Mote that each dashed curve (n) has a minimum        — 

value at some v.  This v, of course, represents the closing speed 

which gives the fewest surviviors of   the Red force.  The inter- 

section of a dashed line for a given KR with the corresponding 

solid line occurs at a value of v, which results in a "parity" 

condition (i.e., the surviving Blue forces are equal in number 

to the surviving Red forces at r = 0).  Some of these inter- 

section points are encircled on Figure 1.1.1.2. 

Figure 1.1.1.3 shows m(0) and n(0) versus v with R as the 
a 

parameter which varies from one curve to the next.  The curves in 

thir figure for R  = 200Ü meters are identical with those for 

KQ = 5 x 10~  in Figure 1.1.1.2.  Increasing Ra increases the Red 

losses and decreases Blue losses.  The curves are somewhat sim- 

ilar to those of Figure 1.1.1.2. 

Figure 1.1.1.4A is another set of curves of m(0) and n(0) 

versu? v, .ut here, N, the initial value of n , is the parameter 

which ic  varied from one pair of curves to the next.  The array of 

• 

i 
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curves is simiJar in appearance to Figures 1.1.1.2 and 1.1.1.3. 

Figure 1.1.1.4B is an enlarged version of the left half of 

Figure l.l.l.UA.  The closing-speed range is from 0-40 meters/sec- 

ond instead of from 0-80 meters/second. 

Figure 1.2.1.2 shows the force difference, m - n, at r = 

0 as a function of closing speed.  X0 is the parameter which is 
P 

varied from curve to curve. All conditions are the home for this 

set of curves as for Figure 1.1.1.2.  The only differences are 

the reduction of the range of v from 80 meters/second to 40 meters 

second, and plotting of d as the ordinate instead of m(0) and n(0 

Several features of Figure 1.2.1.2 are of interest: 
c _ A 

The curves for Kg = 2 x 10~ and for Kg = 3 x 10~ cross the 

line for d = 0.  The value of v at which these crossings 

occur represent values at which parity occurs [i.e., m(0) = 

n(0)].  Note that particularly for Kg = 2 x 10" , the slope 

of this curve where it intercepts the v-axis is infinite, 

thus indicating that a very slight increase or decrease of v 

from 5 meters/second can substantially affect the outcome of 

the engagement.  The outcome at v = 5 meters/second for 

Ka = 2 x 10"  is indeterminate. 
p 

Each of the curves in this figure (1.2.1.2) has a cusp or 

discontinuity below the v axis.  Reference to Figure 1.1.1.2 

shows that theje discontinuities occur at values of v for which 

m(0) = 0.  In other words, for values of v up to the cusp in 

each curve, m is wiped out completely.  For values of v greater 
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than that for the cusp, there is some surviving m.  Th^ cusp 

above the v-axis on the curve for Kß = 2 x 10" occurs where the 

Red side, n, is completely eliminated.  This curve is very 

sensitive to v.  For v < 5 meters/second, Blue is eliminated, 

and for v = 14 meters/second, Red is eliminated. As v increases, 

each curve approaches m(0) - n(0) = 0.  At infinite speed (V "*" °°), 

neither side would suffer any losses and the outcome would be 

m(0) - n(0) '  0. 

Figure 1.2.1.3 is a set of curves for m(0) - n(0) versus v, 

with R as the parameter which varies from curve to curve.  Here, 

as in the previous figure, the value of v at which each curve 

crossas the v-axis represents a parity condition and again some 

of the curves, particularly those for the higher R 's, show       * 

very high slopes where they cross the v-axis, thus indicating      * 
m 

great sensitivity to v at these points. These curves also 
t 

have cusps or discontinuities. Cusps below the v-axis indicate    j 

conditions where m(0) = 0, while those above the v-s-'is occur      -, 

for conditions where n(0) = 0. 

Figure 1.2.1.4 is a set of curves with abscissae and or- 

dinates the same as for the two preceding figures, but with N, 

the initial value of n, as the parameter.  The v-axis crossings 

ani cusps for these curves have  the same significance as these 

features have in Figures 1.2.1.2 and 1.2.1.3.  Note that the 

curves acpear quite similar to those of Figure 1.2.1.3.  This 
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indicates that decreasing N has an effect very similar to that of 

increasing R^. 

Figure 1.2.2.1 is another presentation of the information 

shown in Figure 1.2 1.2.  The abscissa and parameter have been 

interchanged, so that now, v is the parameter and K is the ab- 
P 

scissa.  The curves of Figure 1.2.2.1 show an almost linear 

relationship between m(0) - n(0) and K , except for the curve 
P 

for v = 10, which has discontinuities.  In Figure 1.2.1.2, the 

vertical line for v = 10 passes through the region of discon- 

tinuities for the curves of constant Kg, so it is to be ex- 

pected that the transformation of this line to the n(0) - m(0), 

K coordinate system of Figure 1.2.2.1 would show discontinuities. 
P 

Figures 1.3.1.2, 1.3.1.3 and 1.3.1.UA and B are curves 

showing the final force ratio,  p = r^l   ,   as a function of v. 

The parameter which is varied from curve to curve for Figure 1.3.1.2 

is Kg, that for Figure 1.3.1.3 is R , and that for Figures 1.3.1.4A 

and B is N. Figure 1.3. LIB is similar to Figure 1.3.1.UA 

except that the v-axis has been extended to 8 0 meters/second. 

For these figures which show p as the ordinate, the point 

where a curve crosses the line p - 1 represents the parity 

condition. Any point above this line indicates a superiority 

of forces for the blue side, m, and any point below this line 

represents superiority of forces for red.  These families of 

curves are very similar in appearance, regardless of whether Kg, 

R , or N is the parameter. 

• 
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Figure 1.3.2.1 shows p as a function of Kß with v as a para- 

meter.  It is similar to Figure 1.2.2.1, with p as tne ordinate   | 

instead of m(0) - n(0).  The curve for v = 10, which is discon-    f 

tinuous in Figure 1.2.2.1, is not reproduced in Figure 1.3.2.1; 

however, the curve for v = 20 in Figure 1.2.2,1 is almost linear   f 

in this figure, and shows definite curvature in Figure 1.3.2.1. 

5.2    Initial Conditions  to Achieve a Speoifio Outcome -» 

The 2.-.-.- series of curves show various sets of initial 

conditions and parameters required to give m(0) = n(0) = 10 

at r = 0.  This is a specific parity condition, where m(0) - 

n(0) = 0 and m(0)/n(0) = 1. 

meters was omitted, since it would have fallen on the M curves. 

I 
Data for these curves were obtained by setting conditions 

on the integrators of the analog computer circuit for the desired 

outcome of the engagement Cm(0) = n(0) = 10] and operating 

the circuit backwards (in negative time) until R =3000 meters. 

Figure 2.1.1.3 shows the required values of M and N, as 

functions of v, which will lead to an outcome of m(0) = n(0) 

= 10.  The parameter, R , goes from 2J00 to 3000 meters.  The 

dashed curve labeled "2" is N versus v for an R of 2000 meters. 
a 

The dashed curve labeled "3" is N versus v for an R of 3000 
a 

meters.  The dashed curves between these two are for interme- 

diate values of R at intervals of 200 meters.  The curve for 2^00 
a 

n 

. 
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The solid curves in this figure are for M versus v and there 

is a curve for each K from 2000 meters to 3000 meters at 200- 
a 

meter intervals. They occur in the same order as the N curves. 

The one giving the lowest M for a particular v is for R = 

2000 meters, while the one giving the highest M for this v is 

for Ra = 3000 meters. In this figure, it appears that for some 

R between 2200 and 2^00 meters the N versus v curve could 
a 

almost coincide with the corresponding M versus v curve.  If 

this were true the implication would be that for this R , the 

values of M and N would always be equal, regardless of v, if the 

outcome were to be m(0) = n(0) = 10. 

Figure 2.1.1.5 is a p} t of starting conditions, as a 

function of v, to give m(0) = n(0) = 10 at the outcome, with 

K and K varied so that K /v and Kö/v remained constant for the up (X p 

various values of v.  This figure shows that under these condi- 

tions, M and N are independent of v. 

The validity of this conclusion may be shown analytically. 

In a straightforward manner (1) and (2) can be transformed to 

. / 

and 

§ • X - •* (3) 

dm  K3rR   w%_ 
d? " 7-(R " r)n CO 

If v is constant, then K /v and K0/v will also be constant. «      p 

If v is changed, but K and KQ  are readjusted to make K /v (X      p ex 

 —.—- 
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and Kg/v remain unchanged, equations 3 and 4 are unchanged. The 

outcome for given values of M and N will th^n be independent 

of v, although changing v will change the rate at which the 

solution is generated in the analog computer circuit. 

Figure 2.1.3.1 shows the same data as that plotted in Fig- 

ure 2.1.1.3, but this time Ra is the abscissa and y is the par- 

ameter. The intersection between each solid line (M) and the 

corresponding dashed line (N) for a given v represents the ini- 

tial values and value of R , for equal numbers of m and n at the 

beginning of the engagement, as well as equal numbers at the end, 

These points do not fall along a line of constant R as was 

implied by Figure 2.1.1.3. 

Figures 2.1.5.6A through 2.1.5.61, inclusive, are plots 

of M and N versus K /v, with Kg/v as the parameter. The initial 

conditions defined by the curves will result in an outcome of 

m(0) = n(0) = 10. For Figures 2.1.5.6A through 2.1.5.6D, R& is 

at 1500 meters and R0 is at 3000 meters, but RÄ is varied from P o 

figure to figure. Values of R for these four figures are 3000 

meters, 2250 meters, 1500 meters, and 750 meters, respective- 

ly. Although these four figures contain considerable informa- 

tion, it is difficult to draw any general conclusions from ex- 

amining them.  It appears that, for smaller values of R , the 

values of M and N needed to produce an outcome of m(0) = n(0) 

= 10 are reduced, as would be expected.  One way of interpreting 

the data in these four figures is to regard each of them as 
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a picture of the situation at one of four successive values of 

RQ.  Thus, Figure 2.1.5.6A gives the values of M and N needed 

at R =3000 meters if the outcome at r = 0 is to be m(0) = 
o 

n(0) = 10.  If K ,  X and v remain constant, r, the distance 
Op 

between the forces, becomes smaller at a steady rate.  When it 

reaches 2250 meters, the values of IT. and n at this point may be 

found by referring to Figure 2.1.5.6B and reading ofi the M 

and N for the assumed constant values of K , Kfl , and v.  Figure a  3 

2.1.5.6C gives the "picture" whenR has diminished to 1500 

meters, and Figure 2.1.5.6D gives the information when R = 
o 

750 meters.  It is apparent that as R approaches 0, the lines of 

M and N versus K/v will become more horizontal and will eventu- 

ally coincide with the line, M = N = 10. 

For Figures 2.1.5.6E through 2.1.5.61, R0 is at 3000 meters, 
p 

3 
but R has been increased to -rR. or 2250 meters.  This increase 

a H 3 

in range of the Blue forces' weapon would be expected to raise 

the initial strength of the Red forces and possibly reduce the 

initial strength of the Blue force over those for figures 

2.1.5.6A to 2.1.5.6D, where R was only one half of R0 . 
a       J 3 

Comparison of Figures 2.1.5.6A and 2.1.5.6E shows that for 

1     3 any given K /v and K./v, the change of R from -xR„ to rRn does a       3 a     2343 

increase the required N at R = 3000 meters, but it also increas- 

es the required M.  This required increase in M is somewhat 

unexpected, and should be investigated further. 
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.  . n 
figures 2.1.7.8A, 2.1.7.8B, and 2.1.7.8C are plots of M -and N li 

versus IOT/V with K /K« as the parameter. Again, these values y 

of M and N are for an outcome of m(0) • n(C) = 10.  Specification 

of a value of /K~Tc/v and a value for X /Krt is equivalent to a 8 aß1 • 
specifying  K /v and K./v.     Thus,  if m a p 

/FT 
3 t v =    X (5) 

and 

K a _ 

5 r•y (6) 

then 

j- X ,       (7) 

and (6) and (7) may be solved for K /v and K_/v to give 
ex       p 

and 

K 
rr-  - */y x,y > o W : 

K 
B . x 

/y 
x,y > 0 . (9) 

Since it was previously shown that M and N remain constant 

when K /v and Kg/v are constant even though v is changed, the 

'The reaier is referred to Section U, 2, where the value of the 
dimensionless parameter RA, which is a function of x, is dis- 
cussed . 

y 

i 
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curves of Figures 2.1.7.8A, 2.1.7.8B, and 2.1.7.8C are valid for 

all v > 0. 

An interesting feature of these three figures is the lack 

of crossings of the "M" lines with the "N" lines.  It appears 

that if M> N for any value of /KlT7v, this relationship 

holds true for all values of /K K7v.  This is experimental data 

only, and the validity should be investigated further, but the 

noncrossing condition certainly appears to hold for Figures 

2.1.7.8A, 2.1.7.8B, and 2.1.7.8C wnere RQ varies from 3000 

to 750 meters. 

Figure 2.2.1.3 shows curves of M - N, the difference in 

initial forces, as a function of v, which will give an engage- 

ment outcome of m(0) = n(0) = 10.  The parameter is R .  This 

figure was plotted from the same data as that used for Figure 

2.1.1.3,  the difference being that M - N instead of M and N is 

the ordinate.  This figure shows that there is no value of R 

such that M = N for all values of v, although the curve for R 

= 2200 meters shows M = N for v > 50 meters/second. 

Figure 2.2.3.1 has the same abscissa and parameter as Figure 

2.1.3.1, but the ordinate is M - N instead of M and tf.     The curves 

for v = 50 and v = 80 are also for M - N; they were plotted in 

dashed form to help identify them on each side of the intersec- 

tions with other curves. 

Figures 2.2.5.6A through 2.2.5.61 are for the same abscissa, 

parameters, and conditions on R , R , and R  as Figures 2.1.5.6A 

though 2.1.5.r»I, respectively, but with ordinates ol' M - N 
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instead of M and N. Again, theue are plots of initial conditions 

which will lead to m(Q) = n(0) = 10 at the end of the engagement. 

These curves do not give complete information, as the actual ini- 

tial values of m and r. must be given, rather than M - N, in 

order to guarantee that the outcome will be m(0) = n(0) = 10. 

They were plotted to give an indication of how M - N behaves. 

Points of interest are CD the plots are almost straight lines, 

and (2) points where M - N curves intersect the line M - N = 

0 represent conditions where the Blue and Red forces start 

with equal numbers and the engagement terminates in a parity 

condition.  Conditions where the curves go below the (M - N = 

0)-axis i'epresent conditions where the Red force is larger at the 

beginning of the engagement. 

Figures 2.2.7.8A through 2.2.7.8C are plots of the initial 

force difference, M - N versus /K"X"/v with K /Krt as the par- a 8       a 8 
ameter.  These curves are plots of the differences of the M and 

N curves of Figures 2.1.7.8A through 2.1.7.8C, respectively. 

They have the same general appearance as the M and N curves, 

themselves. 

Figure 2.3.1.3 is a plot of M/N (for an outcome of ~(C) 

= n(0) > 10) versus v, with R as the pararu«.t *r.  The abscissa 
a 

and parameter is the same for this figure as for Figure 2.1.3.1; 

only the Ordinate has beer, changed from M and N to M/N.  The 

region below M/N = 1 represents conditions where the initial 

strength of the Blue forces is less than that of the Red, and 



**» '***Mie*^:.&**00****'n****i 

I 
311 

n 
o 
ll 

0 

Q 

!i 

0 

thus represents the condition of Blue defeating more of Red than 

it loses, since at r • 0 the two forces are equal. 

Figure 2.3.3.1 shows the same data as that of Figure 

2.3.1.3, but with the abscissa and parameter interchanged. 

This figure is interesting because it shows that the relation- 

ship between R and M/N for a constant v is almost linear. 

Figures 2.3.5.6A through 2,3.5.61 show M/N versus K ,/v, 

with K„/v as the parameter. These figures correspond to fig- 

ures 2.1.5.6A through 2.1.5.61, respectively, with M/M as the Or- 

dinate instead of M and N. 

Figures 2.3.7.8A through 2.3.7.8C correspond to Figures 

2.1.7.8A through 2.1.7,8C, with M/N as the ordinate instead of 

M and N. They use /K KQ/v as the abscissa and K /Kfl as the 

parameter. 

S.3    Figures Showing Results of Parametric Variations 
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o< 
Chapter 6 

DYNAMICS OF A FIRE-DUPPORT ATTACK DOCTRINE 

Seth Bonder and George Cooper 

Previous chapters of this part of the report considered 

homogeneous-force battle models in wnich (a) the ratio of the 

attrition rate functions pr^y) equals a sonataAt and (b) the 

ratio was not a constant.  In the fonrer case closed form solutions 

were developed; however, only analytic approximations and analog 

computer results were obtained when the ratio was not constant. 

In this chapter we consider the situation in which 

and 

a(r) = constant (1) 

ß(r) = K (R - r) (2) a    a 

8(r) 
such that gfCT is not constant but ths resultant equations do 

yield to an analytic solution. A hypothetical, fire-support 

attack doctrine which possesses this property is described 

in the following section. 

6.1     Taotiaal Situation 

The tactical situation shown in Figure 1 depicts 

1. A Red force (n) defending a fixed position at r = 0. 

2. A Blue force (m), under fire from the R«d force, mov- 

ing from r = R (range at which the battle begins) to 

i 
i 

u 

! 
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Red 
Defensive 
Position 

Blue 
Attackers 

.1 

A 
J ' 

V 

A I 
s 

Attack 
Units 
pM„ 

1 '- $   Support 
Units 
(l-p)M 

R. 

Kanne r 

Figure 1   Fire-Suppcrt Tactical Situation 

a(r) = ka(Ra - r) 

0(r) -  kß(Rp - r) 

as = ka(Ra - V 

Rftnr.e r 

Figure 2 Atiri.t ?cn- 
Fin c- Su • ••; ••• 

R&tc :'u.'ict.ion:-. for the 
pi SicUc'.t 5 on 
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r = R at a constant speed (v) without returning fire s 

on the Red force. 

3.  At r - R , p percent of the remaining Blue force CM / s s 

continues to advance at speed v without firing.  The 

remaining (1 - p)M Blue units stop and provide 

supporting fire on the Red force. 

*•.  Red fires only on the moving Blue units. 

The attrition-rate functions which result from this situation for 

use in the differential model of combat are shown in Figure 2. 

The Red force attrition rate varies with ^ange since Red units 

engage closing Blue units.  The Blue attrition rate is a con- 

stant, a = K (R - R ), since the supporting fire Blue units 
s   a a   s rr        • ° 

remain a fixed distance, R , from the Red units. 

6.2    Solution Procedure 

Consider first the range interval R„ < r < R . The Red *» s —•-  — o 

forces do not suffer any losses in this region. The Blue loss 

rate is 

oT=^=^(r)N (3) 

since 

g(r) = K0<R$ - r) 

dm K 

3r -v4 %  - r)N • (4) 
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Letting u = R0 - r, du = -dr, 
P 

dm = -ß. Nu du (5) 

and 

K Nu2 

m*-§Z-+C 

KftN(Rft - r)
2 

= -i—J  + C 2v 

At r = R > n = N and m = M; therefore, 

K N 
] C = K - -|^ CRß - Ro)

2 

and 
- 

K.N 
= M + -fetÄ. - r)2 - (R - R)2] . (6) 2v  3 3   o 

At range r = Re , s 

... M. - H • -k C(R6 - Rs)
2 - <Rß - R0)

2]      (7) 

R  < r < R s —  — o . 

Consider next the range interval 0 < r < R .  Let 

ml = PMs = num^er ^n "t^ie Blue moving force 

M2 = (1 - P)M = number in the Blue fire-support force 
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Then, 

dM2 
IT = 0 

since the fire-support force is not fired upon, 

The Red force loss rate 

D 

I 
dn _ „ dn _   v 
Ht " v d? " -asM2' (8) 

where " 

as = K„(R« - R«> s   a a   s 

is the Blue force attrition rate at r = R . From (8) s 

asM2 n»—Ä-2 r + C , 

•• 

:: 

(9) 

and since n * N a; r = R » s 

asM2 C = N + -—£ R, . 
V   o 

•» 

Thus 

n = N • -^ (Re - D v    s (10) 

Tne moving Blue force loss rate 

dm,     dm. 

Ke(Re - r)n . (11) 

. 
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a 

Substituting  (9)  into  (11), 

dr. v "  [N + ^(R
s-

r)] 
-KftN(Rft  -  r) 

P       * KCRc(Rft  - r> -  Rftr   f r'],       (12) s w0 3 

where, if v is not a function of range (i.e., a constant speed 

assault), the constant 

a-MJ& K«-^-P 

Integrating (12), 

K N(R -r 
DU = J 1 2v 

)2   r vv^ + vf -5i].c. 

Employing the initial condition that at r = R , m, = M, = pM , s       i l s 

KflN(Rfl-R)2       KR   CRP-R   )2       KRflR   2       KR   3 

r - M     .    I       §    s                s    g     s                P  s     .        s 
t - nx 2v 5 T~      "I- 

and 

K3N 2 KR 
*l = Mi + Tv «vr)   " (W 3 + T «Vr)   -  (W ] 

3 KRft 
+ T 

2      2  2r3  2Rs 
V - R8Rs " HT + T2- (13) 

K 3 
Adding and subtracting j  (Rß - Rg) and collecting similar terms, 
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ml  =  Ml + I [(Rß  -  *>3 -   % - V3] 

+ 4? [(Rß - r)2 - (R
ß - V2] (w 

KCRg - R.)r 

r-^fs -r)2 - (R3 - V2] 

We consider next the conditions such that m1 and n approach 

zero simultaneously. Let the range at which this occurs be 

denoted by R . Then, one has from (14) 

.,..,. | [<v »°,> -«, - v'] • [S-S^i] 
• [(R3 - R°)

2 - (Ra - Rs>
2] 

(16) 

and 

n = N • -i-2 (Rs - R°) = o . (17) 

0 < r < R  , 
where it is remembered that "  "" s 

K 1-* . fc . (15) 
v v 

0.3 Conditions on  m. and r. Approaching Zero 

: 
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. Nv Letting 9 . gj, , the range Ro can be ^ ^ ^ 

' nc + Rs = e + R   . 
s   2 s mi 

Lettin B - Rg  - Rs,  and substiTuting   (18)   .nto  (i| 

Mi •$««*- «>• VJ3-*3>*[^-fL] 

one has 

••«Rß - (e • R n2 . n 
2      „2 

} = o 

»»•«[-»'.•«'-^.[^.jfijf.,,.^. 
Since    K = - s  2 | 

v2 

1 iy WSJ 2v2     ^?lj    + ^(^j 

flKgN 
<[ Nv \     „ 

Finally, 

M        K »N2      K N3v 
1 "  2    M~ +       ?       =   0 

'• *2       e^M' 

Remembering that 

(19) 

Ml  = PMfl 
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M2 = qMs where q = 1 - P 

V'' 
' 

and letting 
• 

R8 

(19) becomes 

)2 - (R. - *«> 

M?   V^B . V - 2 **s 
p* rs" w~ N 

N 

= 0 (20) 

n 

- • 
i 

Ji 

6a 

or 

3    Kellz  .   V 
^Ws  6pq2a; 

= 0 (21) 

where z = ]$ H 
N  2v 

To find the desired conditions, it is 

necessary to solve for the three roots of (21) denoted by r.., 

r2, and r~. This is accomplished by applying Cordan's formulas. 

Equation 21 is in the general form x + bx + ex + d = 0, 
Kßü KgV 

where b = 0, c = - A    , and d = ——x—x . Intermediate quan- 
Pq s 6pq ag 

tities needed are s, t, and L, where: 

1. 2 L- 
s = c - f> -  2pqa, 

(22) 

2 .3 
t = d - -|bc + Yi b = 

K0V 

O 
6pq a 

(23) 
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1  _3 L  s   wr  s¥   + pt 1^2 
IT 

*¥ K2v2 

216p-q3ag 
A TTJ   ' (24) 

lU4p q a 

It can be shown that equation 21 has three distinct real roots, a 

single real root, or at least two equal real roots according to 

whether L is negative, positive, or zero, respectively.  The latter 

condition will be neglected for the moment. The condition that 

L be positive implies that 

3 a < Ms s 
<R« - 

3  2 

V2(1 p) 
(25) 

The single real root is given by 

where 

3      3 

A = - |6 + /r 

B = - is - A: 

ft* 
2  .     2  2.,     2  21 6pq a         12pq a^ 

US                                        5 

/3pv2 
-  2Kgn3qas 

/ 
3p 

1/3 

»* 
K, 11/3 

i2pq2«2j V 3pv
2 - 2KJI3qa 

 w^—- + v 
1/3 
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and 

K 1/3 

2 2 
12/3p pq a_ 

(^pv2 - 2K3n^asq - fä?) 

-(v 3pv - 2K3*
Ja8q • 

1/3 
3pv (26) 

When L < 0, three red! roots exist.  These are found by a 

different procedure, which employs the following quantities: 

r = f¥* -&Ub) 

cos  6   = 

1/3  . 

¥ = - is 
1/2 

\27J \2pqaJ "   1 
IE 
6pqa( 

Using (27) and (28) in the following expressions: 

= 2 SF cos 

2^ cos[|(e  +  360°)J 

2fr cosU(e  •  720°)j   , 

(27) 

(28) 
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D 
" 

the three roots are 

•i • 5%; «4 -"t-f.#»S)) (29) 

7 /2V (l -l/ v JT - V3 pfe; 00SJ3cos [-ill 
^Kßnas 

+   360 •)} 

',-4i£;~b>~-i-i{^fc>»4 • 

(30) 

(31) 

Using (26), (29), (30), or (31) as appropriate, the con- 

ditions which cause m, and n to approach zero simultaneously are 

easily found. 

8.4    Condition for   (m.  -  n)  >   0 at  the  Defended Positicn 

The value of the quantity d = (nu - n) at zero range is 

a measure of future success in taking the defended position. 

Consider the conditions under which d > 0 at range zero.  Using o — 

previous notation, 

*, = M, • |(R3 - ,3) • (£ - »)(,» . «*) (32) 

= n = N + s ? s 
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d    >   0  implies that 

(M       V\r        asqK8     3 3 MM,   2 2 asqRsl 

TK (R2 - ir2)] 

or that the  initial force ratio must be 

(33) 

• 

M 
*-        SToT 

2v 

3v^       0 

«3 asqKRn     2 2 asqRs 
V 

2v 

, ,1 0.5    Effect of Assault Speed and Percentage Force Split 

After considerable rearrangement of  (33), 

Tl       T2       T3 d    . pM - N • -z * _-f * «-§ (35) 

where 

v v 

pKftNY                             (R2  -   H2)K.N 

T     =  Hh "   «s*RsM  + -J— L 

qsqKg(Rg
3  -H3)M       O^KgW^  -II2)       a^yUjV 

x 2 I 2 J-*— 

I 

^Some recent results indicate that "bang-bang" controls should 
be applied TO V and p so as to maximize d •  These results 
will be described in a later report. 
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i 
i 
i 
r 

• 



I 

.  i 

gsqKß(Rß
3 •• IT3)M 

l3  " *3 

asqK3nK3NY(R$
2  - n2) 

asqK Nyi/> 

where 

* = R; 
&•>)• 

Taking the partial with respect to the assault speed 

3d 
_£-.. -i - "2 
3v   "  v "  __3 

3T. 
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2T; 

v    v 

To evaluate the behavior of (36), one needs to know the alge- 

braic signs of Tp Tj, and T3.  It is easily shown that T3 ic 

(36) 

always negative. Hence, - 
3T 

v 
is always positive, since 

by the coordinate system assumes that v will be a negative quantity 

It is beneficial to know the conditions under which dÄ can o 

be increased with increased velocity.  By inspection, if T2 
>   0 

3d 
and T^.< 0, r-~ will be positive.  T2 > 0 implies that 

ft R K NYq 
a qKgfty >     5   or, after some rearrangement, that 
SO c 

M 
> Y (37) 

K.N 
T < 0 implies that -jj-[py * (R2 - II2)] < aeqR M, or, after 1 £ p s s 

some rearrangement, that 
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( 3 8 ; 

.· •• ~ t. • .. \, posi tiv~ a.r.c: 

. i \ •• ~ . 

. . , 
\ ....... 

. . ·.,. , _.;, .. ~: icr~s u:- J<:·:· ~,·~ich an assault speed exis-.::s, ·;.; .... ;, 

are 

') 

... ..:. .. ; 2'1'., 6T') 10"' 
~ ...... .:..1.3 

.) 1 + 
~ 

+ ---:;- = -,- -4- -s ( . : ~1 ) 
v ~ " 'j 

127::; 
.. , < 0 ) --s=-..; > 0 

, ' ..... 
\ •+ IJ ; 

v 

t'l'2 
.... > 0 ---:) > 0 .:. - -r;- ( l. • ' 

v 

2T, 
.. < u )__.::: > 0 

j 
( L :2) 

v 

,··~J, (•.:), ar.c (42) suggest that the secane 

.:·.~vt:· :.: (37J a.nd (38) hold. 

·-·:::.·..:..:. ... tc· z,:ro and solving would D~"> the o;·.t· 

BEST AVAILABLE COPY 

... 

' 
.. 

. •' 
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Consider next th« influence of the force split p.  After 

some manipulation, (33) may be put into the form 

dQ - Ap + A3(l - p) + C, 

where 

A - ii +  B  -  s 

asKP  3    3    asKpn  2    ?    asRq 
B = -M(Rft - n3) - --f-u' - a2) - -§-£ 

3v   ß 2v   p ' 

K'ft(Rfi - n2) c = -J g l . 

ado 
Hence, T—— = A - AB = constant.  To check the extreme conditions, 3p 

one can see that d is at a maximum when p = 1 if o r 

C+A>A3+CorB<l. (43) 

For the reverse of   (43),  d    will be at a maximum when p  =  C. o 
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PART D 

HETEROGENEOUS-FORCE DIFFERENTIAL MODELS 
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The preceding parts of the report described efforts to 

obtain solutions for the differential equation description 

of homogeneous-force battles.  These descriptions were sim- 

plifications of the general variable coefficient differential 

equation model of heterogeneous»-force battles.  In this part 

of the report we present solutions and solution procedures for 

simplified forms of the differential equation description of 

heterogeneous-force battles.  Chapter 1 contains the development 

of solutions for the heterogeneous -force battle model when the 

attrition rates are constant and a "zero-one" allocation policy 

is employed.  Chapter 2 contains a description of our efforts 

to develop optimal allocation strategies in context of the 

heterogeneous-force model.  Chapter 3 describes a simplified 

numerical solution procedure for the general heterogeneous- 

force model and a computer program for performing the compu- 

tations . 

"See equations 1 and 2 in Chapter 2, Part A. 



Chapter 1 

CONSTANT ATTRITION-COEFFICIENT MODEL 

Stanley Sternberg 

1.1    Introduction and Notation 

In this chapter we shall discuss the solution of the 

following differential equations representing a heterogeneous- 

fcrce battle: 

. . 

dm. 

dt" 
S'fj. .h. .n. [1] 

i = 1,2,... ,1 

mi(t=0) = Mi 

dt 
= - 7  a..e..m. 

JLd   i] 13 1 
i=l 

[2] 

j = 1,2,. . . ,J 

n.(t=0) = N. , 

Preceding page blank 
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wnere 

0.. " tne  attr%t%on  rate — the  rate at whicn an 
•  • • th individual system in the i  Blue group 

tu 
attrits live j " group Red targets when it 

is firing at tnem. 

•i 
e  = the  allocation factor — the proportion of i 

Blue group systems assigned to fire on j   Red 

group targets.  These are assumed to be either 
...  1 zero or one for any i,j pair. 

Similar definitions apply to ß.. and h...  Equations 1 and 2 
J A JA 

are similar to those presented in Part A of the report axcept 

(a) perfect intelligence is assumed for both sides and (b) the 

attrition rates and allocation factors are not range dependent 

and are treated as constant. 

To facilitate the study of [1] and L2] we introduce zhe 

and N., respectively.  The derivatives of m and n are appropri- 

row vectors m, n, M, and N, whose elements are the m. , n.. , M. , 

and N., respectively.  The deriva' 

ately defined as the row vectors 

d&A dm  /dml      d*l\ 
dt ydt » * • • » SfFy 

and 

d 
Ht 
n (dnl dnA 
t  \dt • '''» dt/ 

The value of this zero-one allocation policy is discussed 
in Chapter 2 of this part. 

.. 

i 



{ 

I 
] 

392 

The matrices A and B are defined as 

A = U.t)   -   Ce..*..) 

B = (bji) = (hji6ji) . 

: 

It follows that equations 1 and 2 can be rewritten 

$£  = -nB, m(t=0) = fi (3) 

|H = -mA,  m(t=0) = N . (H) 

An alternate form to (3) and (U) that will be very useful 

is defined in terms of the row vectors 

z = (in, n), q = (M, fl) , 

and the matrix 

dz (dm dn\ 
cFt' dt J 

•CO- 
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The constant-ccefficienc, heterogeneous-force model of the 

combat process may then be represented by the single matrix 

equation 

i/; = -iG,  Z(0) = q . (5) dt 

The solution of equation 5 is a vector whose elemsnts are 

functions of t.  It will be called continuous if its elements 

are continous functions of t in the interval of interest. 

Similar definitions apply to matrix functions. 

1.2     Existence   and  Uniqueness  of Solutions   of Linear Systems 

A unique solution exists to equation 5, as demonstrated by 

the following basic theorem: 

Theorem  1 

if A(t) is continuous for t > 0, there is a unique 

solution to the vector differential equation 

|| = xA(t),  x(0) = q . (6) 

This solution exists for t > 0, and may be written in 

the torn 

i 
T 

- 

J: 

x = qX(t) , (7) 
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where X(t) is the unique matrix satisfying the matrix 

differential equation 

H = XA(t),  X(0) si, (8) 

where I is the identity matrix. 

-* 

The proof of theorem 1,  as presented by Bellman, is given in 

••        Appendix D, 1,1.  Our particular problem is concerned with the 

case in which A(t) is a constant matrix. 

1.3    The  Matrix Exponential 

In the scalar case, the equation 

dv 
|| = ax,  x(0) = q (9) 

has a solution 

x = qedt . (10) 

The analogous solution of the matrix equation 

|| = xA,  x(0) = q (11) 

has the form 

- Ar 
* = qenx   . (12) 
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By analogy with the scalar case, we define the matrix expo- 

nential . y the infinite series 

eAt = I + AL + 
An+n 

n! (13) 

This matrix series exists for all A for any fixed value of t, 

and for all t for any fixed A.  It converges unitormly for 

finite t.  A proof of convergence is given in Appendix D, 1, 2. 

To show that equation 12 is the unique solution to matrix 

differential equation 11 requires that e  , as defined by (13), 

satisfies 

i 

•TTT " e A ' 
(: H ) 

At for t = 

as required by theorem 1«  "he valiaity of equation 1L "is 

obvious. 

1.4    Similarity,   Diagonalizabilityt   and Joruan Normal   Fovin 

Since the solution of  the diiferentiax equation I Can ü« 

written immediately as 

z - qc (15) 
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1 n 

-tc our problem reduces to evaluating the matrix exponential e 

The infinite series given by (13), of course, is always avail- 

able, but not very attractive.  Our object is to write equation 15 

in a closed form which will lend itself to rapid computation . 

The solution is facilitated by the fact that the attrition 

matrix C has a very special form.  Recall that 

and that 

•CO (16) 

(a..)   =  Ce..^.) (17) 

(bji>   "   (hji*3i}   ' 
(id) 

When the fraction of type-i components assigned to opposing 

type-j components is either C or 1, or v"ce versa, the matrix C 

is said to be "row elemental." 

Definition   1 
A real matrix A is "row elemental" i: each of its 

rows contains exactly one nonzero element.  Similarly, A 

is "column elemental" if each of its columns contains 

exactly one nonzero element. 
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The concept of the similarity of matrices is used in 

the development of our solution procedure.  A square matrix A 

is said to be similar to a square matrix B if there exists 

a nonsinguiar matrix R such that 

A = R-1BR . (19) 

Of particular concern is the situation where A is similar to 

a diagonal matrix D, i.e., 

A = R"1DR , (20) 

and we say that the matrix A is diagonalizable. 

The reason for this particular interest becomes apparent 

when we note tYit 

An = (R"1DR)(R"1DR) ... (R"XDR) (21) 

or 

An = R-1DnR . (22) 

-tA Now the matrix exponential e   can be written in terms of 

the powers of D as 



l*t 

-tA .  T       +o-ln«   .   O  "VR       tVo   , e s  I   •   ts    DR + —      A j        - ~i * (23) 

or 

e-tA - R- 
2^2        .3.3 

tA • tD + — rr + • -I R   . (24) 

th But the diagonal matrix D raised to the n  power is simply 

D n 
l22 

(25) 

ln nn 

Thus, the bracketed expression of equation 24 is in actuality 

of the form 

2:    3! 

-td 11 

-td 22 

0 

-td nn 

(26) 

Therefore, assuming that A is similar to a diagonal matrix D, 

the matrix exponential may be evaluated from the expression 



' »1 

e"tA = R-1 

-td 11 

-•td. 22 

#  -td 

R .    (27) 

In the case wnere the attrition matrix is similar to a 

diagonal matrix, the analysis is now quite clear even though 

the actual determination of R and D has not as yet been discussed 

Unfortunately, however, the attrition matrix C is not generally 

di agonalizable. 

The situation is remedied somewhat if we relax our assump- 

tion that C is similar to a diagonal matrix to the condition 

that C be similar to a matrix in Jordan normal form. 

A matrix J is said to be in Jordan normal form if it is 

zero everywhere except for submatrices along its diagonal, all 

0' of which are Jordan blocks.  If 

blocks, then the matrix 

are Jordan 

J = 

IJI   0  . . . Ü 

o  |J0 • • • o (28) 

0  . . . 
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is in Jordan normal form. A Jordan block is a square matrix 

of the form 

X,  1  0 . . .  0 

s - 
0 A.  1 . . .  0 

0 . . . X. 

0 . . .  0  X, 

(29) 

That is, it contains a sequence of l's along its "superdiagonal," 

while everywhere else it is zero, except possibly along its 

diagonal, which contains a sequence of identical, not necessarily 

real, numbers, X^. Thus, the matrix 

F) \0  0  2/ 

/0 1\ 
is a Jordan block, so is the matrix L n j, and the matrix of 

a single element is also a Jordan block. 

Our interest in Jordan normal matrices will be restricted 

to those having Jordan blocks with zero elements along the 

diagonal. 
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Definition    2 
A "zero Jordan block," denoted 

block with A, equal to zero. 

J , is a Jordan 

A Jordan normal matrix whose diagonal consists entirely of 

zero Jordan blocks and/or diagonal matrices will receive part, 

cular attention. 

Definition  3 
A "zero Jordan normal matrix," denoted Ju, is a matrix 

of the form 

.0 

D, 

where the D, are diagonal matrices and the J, I are zero 

Jordan blocks. 

We now state our main result in the form of a theorem and 

demonstrate its application to the solution of the heterogeneous 

force equations in the next section. 

i • 
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Theorem   2 

If A is a square, row-elemental matrix, then A is 

similar to a zero Jordan normal matrix. 

The proof of theorem 2 is given in Sections 5 through 10. 

1.5    Solution of  the  Heterogeneous-Forae  Differential  Equations 

In this section we assume that theorem 2 is t^ue *nd 

demonstrate its consequences.  We have given that 

C = flJ°R (30) 

where C is a row-elemental attrition matrix.  Then, 

.-«. •- 
i(x.wo. «£!....)„. (31) 

The powers of J are 

.0 
u 

n 
(32) 

where the D£ are 
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n . 

nun 

(33) 

The powers of a zero Jordan block are quite easy to compute as 

illustrated in the following example: 

a- 0 10 0 
0 0 10 
0 0 0 1 
0 0 0 0. 

a 
'0 0 10' 
0 0 0 1 
0 0 0 0 ' 3 

.0 0 0 0. 
SI3 

0 0 0 1' 
0 0 0 0 
0 0 0 0 
0 0 0 0, 

anci [«JjJn is the zero matrix for n > 3.  In other words, if 

J,  is a zero Jordan block of order N, then |j{!]  ^s nonzero 

only for n < N, and the n power of J, I is zero everywhere 

except for a superdiagonal of l's displaced n times from the 

main diagonal. 

The bracketed tera of equation 31 is therefore the matrix 

function 

0 

F(-t) = 
E.C-t) 

T1(-t) 

(3H) 

i 
i 
T 

!„(-«>. 

.. 

•• 
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where 

V-t> • 

-td 13. \ 

-td nur, 

(35) 

and 

Tk(-t) = 

1 -t t2/2!  -t3/3! 

1 -t 

0  1 

0   0 

t2/2! 

-t ... 

(-l)m+1tm/m! 

(_1)mtm-l/(nl_1). 

/ 

(36) 

The solution of the heterogeneous-force differential equa- 

tions is therefore 

(m n) =  (H N)R~2F(-t)R  . (37) 

1,6   Assignment  Chains and Cycles 

When we examine the actual assignments which could arise 

during a heterogeneous-force battle process, we recognize two 

distinctly different situations which lead to two different 

kinds of time solutions to the model differential equations. 

In the first situation we have "cyclic assignments." For 

example, nu is assigned to n~ , who is assigned to m., who is 
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assigned tö n9, who completes the cycle by being as- 

signed to m, .  Of course, here we are speaking about 0,1 

assignments where each component group is assigned to only 

a single opposing component group.  In the second situation 

m3 might be assigned tc n^, who is assigned to nu, who in turn is 

assigned to one of the components in the preceding cycle. 

Thus m~ is an unassigned component and suffers no attrition, 

while n, and m2 form part of the "chain" headed by m3« 

It should come as no surprise that the cyclic assignments 

are directly related to the exponential terms of the time oo- 

lution shown in equation 37, while eccb  assignment chain gives 

rise to a submatrix T, .  The complicated interrelations be- 

tween the many possible assignment cycles and assignment 

chains are manifested within the similarity transform ma- 

trix, R . 

We now define the above concepts in a more formal manner 

with respect to the attrition matrix, C.  Let C be a row 

W {(L,t1), (2,t2), ...,(N,tN)} ,        (38) 

where the nonzero element on the i  row of C occurs on the t.'th 

column of C.  Suppose that n-ordered sequence S of length 

m can be formed from a subset of W 

Sffi  =  (i, ,t, ), (i„,t_. ),..., (i_,t, )      (39) (il>V (i2'V*'--'(Vti > 1        L m 

i 
elemental matrix of order N and let W be the set of N subscript     •? 

pairs of the nonzero elements of C, 
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such that 

for k = l,...,m-l .  Such a sequence is said to form a "sub- 

script chain." For example, 

Su = (if,3) (3,2), (2,5) (5,1) 

is a subscript chain of length 4.  The elements of C whose 

subscripts form the subscript chain are said to form an "el- 

ement chain," or simply a "chain" of length m. 

If S is a subscript chain and if 
m 

then the subscript chain is said to form a "subscript cycle." 

The elements of C whose subscripts form the subscript cycle 

are said to form an "element cycle," or simply a "cycle" of 

length n, denoted C . An example of a cycle of length three is 

C3 = ^.S5, (CS,3) <03,25 ' 

A nonzero diagonal element of C forms a cycle of length one. 

The following properties concerning the row-elemental 

matrix C are sufficiently obvious as to be stated largely 

without proof: 

Property   1     All nonzero elements of C belong to either 

cycles or chains, or both.  To avoid the ambiguity 

of the latter case, we will say that an element 



belongs to a chain if and only if it does not belong 

to a cycle. 

Property    2        An element can belong to at most one 

cycle.  For if two different cycles share common 

elements, then there is one common element, say 

c. ,, which is followed by nonzero elements c t 

and c,   ,k t k"', of different cycles.  But this 

contradicts our premise that C is row elemental. 

Property   Z        There are no cycles of length one in C. 

Similarly, there are no chains of length one.  (C 

has a zero diagonal.) 

Property   4        All cycles of 0 are of even length. 

Property   5        Let A be a row-elemental matrix, all of whose 

nonzero elements form a single cycle.  Then A is 

also column elemental. 

Definition   4 
A "cyclic matrix" is a row-elemental matrix whose 

nonzero elements form a single cycl«. 

In proving that a row-elemental attrition matrix C is 

similar to a zero Jordan normal matrix (theorem 2), we will 

first show that C is similar to a "cyclic normal matrix." 

Definition  5   A row-elemental matrix of the form 

Q = 

C,   C ... 0 0 
1 

'o  c2... 0 0 

0   0 ... c 0 m 

Di    V--  Dn,G" 

t rows 

t rows 

(42) 

:: 
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is said to be "cylic normal" if C^,C?,...,C are cyclic 

submatrices and the nonzero elements of submatrix G do 

not form any cycles. 

Theorem   Z 
Let A be a square, row-elemental matrix.  Then A 

is similar to a cyclic normal matrix Q, i.e., 

A = P-1QP, (H3) 

where the similarity transform P is a permutation matrix 

Before proceeding with the proof of theorem 3, we introduce 

a few definitions concerning permutations. 

definition  6 
A "permutation of degree n" is the operation of 

changing the order of n given distinct objects.  If the 

n distinct objects are the numbers l,...,n, a permutation 

is the replacement of one arrangement (A-,,..., A ) of 

(l,...,n) by a second arrangement (y,,...,u ).  We 

represent this permutation by 

Vv~>vJ 
We frequently say that the permutation TT transforms A . 

into u. or that y. is the image of A. under TT , i.e., 
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Definition    7 

The  "product"  CJTT of two permutations  ff and  o is the 
permutation resulting from first carrying out  TT and then 
o.     Thus  if 

7T    = • 
A 

then 

/ls... ,n 
OTT   = I 

Hi 

It follows that the inverse of 

is the permutation 

\w1,..,yn/ 

Definition   8 

With each permutation * of degree n is associated the 

n-by-n matrix P defined by the equation 

/p  \ = f 1 whenever i = ir(j) 

0 otherwise "'      \ 

for i, j = l,...,n.  Thus, if TT is the permutation 

u 

I 
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i 

\Al,,",Xn/ 

th row, the the first column of P contains a 1 in the A. 
th second column of P contains a 1 in the A?  row, and so 

forth, while all the remaining elements are equal to 

zero. A matrix of this type is called a "permutation 

matrix." 

It follows from definitions 7 and 8 that, if P is a 

permutation matrix associated with the permutation TT, then 

P " is the permutation matrix associated with TT 

A permutation TT may be performed on tha rows  of a square 

matrix A by premultiplying  A by the permutation matrix P asso- 

ciated with IT.  Let pa., denote the elements of the matrix 

product PA, then 

pa.. = y.  P.  ai 4 • (44) 

.th 
There is only one nonzero element, P.^*» in the i * row of 

P.  In particular, Pj^* = 1 where k* = 7r~ (i). Hence, the non- 

zero product in the summation over k is pa  if and only if 
ij 

i = TT(k). 

A permutation ir may be performed on the columns  of a 

square matrix A by postmul tip lying  A by the inverse of the 

permutation matrix P associated with TT. Transposing A replac- 

T es the rows of A by the columns of A. Premultiplying A 

T 
by P permutes the rows of A . Transposing the matrix product 
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T T I1 

PA yields AP , which replaces the columns of A by the 

T 
permuted rows of A ; hence, A has been permuted columnwise 

according to TT.  Since the columns of P are mutually orthogonal, 

T   -1 • normal vectors, P = P    The operation of simultaneously in- 

terchanging (permuting) the rows and columns of a square matrix 

A according to a permutation ir is therefora accomplished by the 

matrix operation PAP" . 

Simultaneous row and column interchanges are all that are 

required to put a square, row-elemental matrix into cyclic 

normal form.  Let A be square and row-elemental and let W 

be the set of subscript pairs of the nonzero elements of A 

W = {(l,t1),(2,t2),...,(n,tn)}  . 

Let C,,...,€_ be subsets of W of subscript pairs forming cycles 

in A.  In particular, cyclj k consists of the I  subscript 

pairs 

Ck = {(kl,t:k )>--->(krt
k  )} ' 

Let ir. be the permutation 

.k. (kl k2",k* ) 

and P, its associated permutation matrix. Then the operation 

P,A interchanges the rows k,f...|k. of A with rows r,...,r+* 

of A.  The operation AP"  ir.\3rchanges columns k,,...,k. 

with columns r,...,r+£ of A.  But columns k1>...,k^ precisely 

4 

t 

i 

I 

i 
I 
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contain the elements of cycle C, because (t, , ...,t, } is 

identical to {k^,...,kg} .  Therefore, P,AP" moves the elements 

of cycle C, into the square submatrix C, on the diagonal of 

Q.  The fact that A is row elemental insures th«?.t C- will contain 

only the nonzero elements of cycle C, . 

Simultaneous row and column interchanges of the type 

just described on all cycles of A are accomplished by the 

transformation 

p
m
pm i-.-PiA PT1..^'1. P"1   , m m-1   1  1    m-1 m (45) 

or simply 

PAP"1 , (46) 

where P = P P  ....P. .  If j* is the column subscript of a 
m m-1   1 

nonzero element a* of A not belonging to a cycle of A, but with 

j* contained in the set of column indices of cycles of A, then 

i*, the row subscript of a*, cannot belong to any set of row 

indices of cycles, or a* would itself belong to a cycle. 

The similarity transformation PAP" therefore carries column 

j* into the first t columns of Q, but carries row i* into the 

last n-t rows of Q.  The submatrices D, , therefore, are made 

up of nonzero elements sharing rows with ehe elements of C,. 

All submatrices to the left and right of C, must be zsro. 

Finally, the matrix G is composed of interchanged nonzero 

elements of A not previously sharing columns with elements 

belonging to cycles. 
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The cyclic normal matrix Q is therefore obtained from 

A as 

Q = PAP"1 (47) 

1,?    Jordan Normal  Matrices 

ihe Jordan normal matrix was previously discussed in 

Section 1.4. Theorem 2 stated without proof that, if A is 

a square, row-elemental matrix, then A is similar to a par- 

ticular Jordan normal form, called a zero Jordan normal ma- 

trix.  The zero Jordan normal form was defined in terms of 

submatrices along its diagonal, which were stated TO be 

either diagonal submatrices or zero Jordan blocks. 

In theorem 3 it was shown that a square, row-elemental 

matrix A is similar to a cyclic normal matrix Q.  We begin at 

this point to demonstrate that Q is similar to a zero Jordan 

normal matrix J .  Since 

by theorem 1» and as we will demonstrate, 

Q = S-1J°S  , (50) 

the prooi of theorem 2 immediately follows as 

A =  P"1S"1JCSP (51) 

i 

or 

A  =   P"   QP        . (48) 

I 
i 

i 
I 
F 
i 

A =  P-1QP (49) 

.. 

.. 

I 
i 

•i 
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or 

A = R"1J°R , (52) 

where R = SP . 

Our particular result follows as a consequence 

lowing well-known theorem of linear algebra: 

cf the fol- 

Theorem    4 

Let A be an arbitrary square matrix, 

a nonsingular matrix T such that 

A = T'-KjT , 

where J is a Jordan normal matrix. 

Then there exists 

(53) 

Since the proof of this theorem is quite detailed and is 

given by Franklin (1968), we shall avoid the proof but we 

will discuss its consequences. 

We write the N*N Jordan normal matrix J as 

/ 

J = 

a 

where the k  Jordan block 

\ 

k "" 
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is of order n, ; hence, n- + " *  + n * N.  Let the rows of T 
JC 1 i 1 

be denoted by the row vectors T,,,.,,T.. and let the submatrix 

T of T consist of the M, rows T .,,... ,T    . where s. - 

n, +**' + n, .,. Premultiplying both sides of equation 53 

by T yields 

TA = JT , (5«+) 

which is equivalent to the system 

TkA = J, xk 
;  k = 1,...,M.   (55) 

Expanding (55) shows that 

A,   1     ...   0 

0    A,    ...   0 

0     0     ...   Ak    1 

0     0     ...   0 

(56) 

or 

f     .-  A V1 AT +   T* Ak  xs,+1 s,+2 

7 • 

T       j. n    A w1 k
 Vv1  Vnk 

V»* A A     T k Vnk (57) 

which, on collecting common terms, is 

: 
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Vi(A"XkI) = V2 

Ta   +n        (A -   A.I)   =   T     .^ (58) 
W1 k Vnk 
T     .      (A  -   X, I)   =   0 

Sk+nk 

Now, substituting the last equation into the next to last 

and so forth yields 

Vi<A - v"*= ° 
s,+n,-l     x (59) 

The vector T     is by definition an eigenvector of A corres- 
sk+nk 

ponding to the eigenvalue A,.  The eigenvalue A, has multi- 

plicity n, in A and the remaining n,-l vectors T  .-,..., 

T
0 +« -i  are called "latent eigenvectors" of A corresponding W1 

to eigenvalue A. .  The f. are necessarily linearly independent 

as the matrix T is nonsingular. 

Both eigenvectors and latent eigenvectors are examples 

of what Franklin calls "principal vectors." He states that 

a zero or nonzero vector p is a principal vector of grade 

g >^ o belonging to the eigenvalue A. if 

g^ - (AiI - A)
6p = 0 

and if there is no smaller non-negative integer y  <  g for which 

IYT - (AiI - A)
Tp = 0. 
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The vector p = 0 is the principal vector of grade 0. 

The eigenvectors are the principal vectors of grade 1. 

Herein we shall speak in terms of principal vectors of grade 

g rather than this ambiguous latent eigenvectors arid restrict 

the term eigenvector for a principal vector of grade 1. 

In the next section we discuss the eigenvalues and ei- 

genvectors of the cyclic submatrices on the diagonal of the 

cyclic normal matrix Q. 

1.8    Eigenvalues  of Cyclic Matrices 

We begin by stating our main result. 

Theorem   f> 

Let C be an N-by-N cyclic matrix:  (i) Then C is 

similar to a diagonal matrix»  (ii) Let p be the product 

ox" the N nonzero elements of C, then C has N distinct 

eigenvalues equal to the N  roots of (-1) p. 

We need only prove part (ii), for part (i) follows immediately 

from the following theorem. 

i 

Theorem    6 

[Mirsky, (1961), p. 296] If the N eigenvalues of 

the N-by-N matrix A are distinct, then A is similar to 

a diagonal matrix. 

We will need the following definitions in proving part (ii) 

of theorem 5. 

-» 

Definition  9 

(i)  Let A be an M-' y-N matrix.  If K < M and L <_ N, 

then any K rows and L columns of A determine a K-by~L "sub- 

matrix" of A.  (ii) The determinant of a K-by- K submatrix 

of A is called a "K-rowed minor" of A. 
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When A is square, the following definition is relevant. 

Definition 10 
A "principal submatrix" of A is a submatrix whose 

diagonal is part of the diagonal of A.  The determinant 

of K-by-K principal submatrix of A is called a "K-rowed 

principal minor" of A. 

A K-by-K principal submatrix is obtained from the N-by-N matrix 

A by deleting N-K rows of A and the corresponding columns, 

i.e., rows and columns having like indices. 

Finally, so there is no misunderstanding: 

Defimtion    H 
Let A = (a..) be an N-by-N matrix and X a scalar 

variable.  The "characteristic polynomial" of A is the 

polynomial g(X) given by 

g(X) = |AX - A 

(60) 

The characteristic equation of A is the equation g(X) 

= 0.  Its roots are the eigenvalues (or characteristic 

roots) of A. 

fhe polynomial g(X) is of degree N.  Its leading term is X* . 

The remaining coefficients can be determined by the following 

theorem: 

X - an - a12 ...   - a1N 

" a21 X - a22 ...   - a2N 

" aNl " aN2 "• X  " aNN 
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Theorem   ? 

[Mirsky, p. 137] For 0 <_ r < N, the coefficients 

of A  in the characteristic polynomial g(A) of A is 
N-r equal to (-1)"   times the sum of all (N-r)-rowed principal 

minors of A. 

The  principal minors of a cyclic matrix may be evaluated 

by the following theorem: 

Theorem  6 

Let C be an N-by-N cyclic matrix.  Then for 0 < r < N, 

all (N-r)-rowed principal minors of C are zero. 

The proof of theorem 8 follows.  Let C denote an (N-r)- 

both  w- and column-elemental, its principal submatrices, formed 

by deleting corresponding rows and columns of C, must neces- 

sarily contain fewer nonzero elements than C.  As the nonzero 

elements of C form a single cycle, the nonzero elements of C 

cannot therefore form any cycles. 

If we denote the nth power of C as C'n = (c!n), then 

we can write 

N-r  N-r     N-r    N-r 

ij 

V1  V1      W1  Vr1 2 

n 
rowed principal submatrix of C where 0 < r < N.  Since C is 

.. 

it 

" 

'" ck  k   ck  il  '       (61) n-2n-l Vl3J 

D 
11 
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ii 

Note that the elements in the summand above form an n-element 

chain.  Now suppose n = N.  The elements in the summand chain 

cannot all be nonzero, for if they were, they would necessarily 

have to be distinct; otherwise, the N-element chain would 

contain a cycle.  But C1 cannot contain N distinct nonzero 

elements simply because it has fewer than N nonzero elements. 

Therefore, c£. is zero and C1  is the zero matrix.  The proof 

of xhe theorem follows from the fact that 

. : 

For r = 0, the single (N-r)-rowed principal minor of C 

N+l is simply the determinant of C, which is given by (-1) 

times the product of the nonzero elements of C.  Letting p 

denote this product, the characteristic equation of C is then, 

by theorems 7 and 8, 

XN + (-1)N+1 p = 0 (62) 

This result proves part (ii) of theorem 5. 

1-9    Eigenvectors  of Cyolio Matrioee 

Before we can transform a cyclic matrix to its diagonal 

form, we must compute the necessary transformation matrix. 

This is accomplished by computing its eigenvectors. 

Theorem  9 
(Mir sky, 1961, p. 293).  If Xlf...,X are linearly 

independent eigenvectors of an n-by-n matrix A, and S 
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is the (nonsingular) matrix having X,,...,X as its columns, 

then S~ AS is a diagonal matrix. 

Eigenvectors corresponding to distinct eigenvalues of A are 

linearly independent (Perlis. 1952 > p.172), and thus an n-by-n 

cyclic matrix has n linearly independent eigenvectors.  It only 

remains to solve for them. 

Let C be a cyclic matrix and denote the nonzero element on     I 

the i  row of C as c,  .  Let X by an eigenvector of C 
i,ti 

Xx-, - c. 

Xx - c    x.  =0 . 
n   n,tn tn 

Now the coefficient matrix in (63) has rank n-1; hence, the 

solution of the homogeneous system of linear equations con- 

tains a single arbitrary value. We set x, = 1. Then, 

x  = £-*— (65) 
tl  °l,t1 

and furthermore 

:H ' ^ (vd' xt  • x„ K   • • It       (66) 

i 

i corresponding to eigenvalue X. Then by definition 

(XI - OX s 0, (63) 

or, by the rules of matrix multiplication, I 

I 

: 

I 
I 
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,th 
To eliminate the staircase subscripts we denote the i -fold 

image of 1 as 8*. Then, in general, the xi are given by the 

recursion relationship 

•i = \-x k.r»i j 
(67) 

where x„ = x- = 1. 

Th3 subscripts sQ,s1,...,s , define the "cyclic order" 

of the cyclic matrix C.  [Note that sQ = 1.] For instance, 

the cyclic order of the cyclic matrix 

is (1,4,2,3).  Similarly, we define the "cyclic permutation" 

corresponding to the cyclic matrix C to be 

(1,2,3,  ...,n  \ 

l,s1,s2,...,sn_1/ 

whose corresponding permutation matrix is P . Then finally, 

A°/d, 

X = P (68) 

n-1, 

where the d. are given by the recursion 
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i+22 

i   i-l Bi-1,8i 

and dQ = 1. 

Letting D denote the diagonal matrix (d..), we can write 

the eigenvector X corresponding to the eigenvalue X as 

X = P D c 

If A-,A«,...>X  are the eigenvalues of C, then the transform 

matrix is given by 

S = P DA , c 

where 

A = 

x° x° Al A2 
• • , o 

An 

X1 X1 Al A2 
An 

X2 X2 Al A2 " X2 n 
,       •    • * 
v     :   : :     j 

\ ,n-l ,n-l ... ,n-l/ 
\A1  A2       An / 

(70) 

(71) 

Having treated the eigenvalues and eigenvectors of the 

cyclic submatrices of the cyclic norm form of Section 6, we 
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endeavor to show that the remaining eigenvalues of the cyclic 

normal form are all zero. 

Recall that the cyclic normal form of a square row-elemen- 

tal matrix of order n is 

.. 

.: 

1 

Q = 

c1 0 ... 0  0 

o  c2... 0  0 

0   0 ... C  0 m 

Dl V" Dm u 

(72) 

where C,...,C are cyclic submatrices and the submatrix G 
1    m 

contains no cycles. For some positive integer r, the matrix 

Gr is identically zero. This fact follows from the argument 

that the elements of Gr given by the expression 

(73) 

in which the elements of the summand form a chain of length 

r.  Since G contains no cycles such that the elements of G 

may be repeated in the summand, we can guarantee that Gr is 

zero simply by making r greater than the order of G: This follows 

from the fact that G is row elemental and therefore contains 

at mos* r nonzero elements. 

For some power r of Q, say r equals the order of G, we car. 

then say 

i 



T 

r 5 

. 

I 
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<r =  : :   : :        m) 

where the submatrices (*) are of no particular concern here. 

What is of concern is that Qr contains exactly r zero columns. 

r 
The characteristic equation of Q" therefore has the form 

|XI - Qr| = Arg(A) =0 uS) 

and hence has at least r zero eigenvalues.  The following theorem 

of Perlis relates the eigenvalues of Qr with those of Q. 

Theorem 10 
(Perlis, 1952 > p. 168).  Let A be a square matrix and 

let 

g(x) * c(x)/d(x) , 

where c(x) and d(x) are polynomials and d(A) is non- 

singular.  The if A,,...,A are the eigenvalues of A, 

g(A),...,g(A ) are the eigenvalues of g(A). 

In our application, we let d(x) = 1 and c(x) = x .  Hence, 

d(Q) a I and g(Q) = Qr, whose eigenvalues are the eigenvalues 

of Q, raised to the r  power.  But Q has at least as many 

nonzero eigenvalues as it has cyclic elements, of which there 

are exactly n - r. hence, Qr has at least n-r nonzero eige 

values by theorem 9.  We therefore conclude that Q has 
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:: 

I 
i 

exactly r zero eigenvalues and finally, by the fact that the 

r  root of zero is zero: 

Theorem    11 
If Q it a cyclic normal matrix having r noncyclic 

elements, Q has exactly r zero eigenvalues. 

0 

": 

i 

1*10 An Example 

Consider a situation involving 3 Blue groups (is 1,2,3) 

and 4 Red groups (j = 1,2,3,4). Bluefs attrition matrix (the 

matrix of a..fs) and Red's attrition matrix are 

[aij] 

and 

[Bij] 

, respectively. 

The assignments of the Blue and Red groups are given by the 0,1 

assignment matrices 

E = K = 

! 
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Then , 

A   =   E   •    [Oy] 

and 

B =  H CV 

The attrition matrix C is then 

•CO- 

0 0 0 0 2 0 0 

0 0 0 0 0 4 0 

0 0 0 10 0 0 

0 4 0 0 0 0 0 

0 1 0 0 0 ö 0 

0 10 0 0 0 0 

0 0 10 0 0 0, 

We begin by finding the cyclic normal form.  This is most 

easily done by listing the nonzero elements of C and checking 

each nonzero element individually to determine whether it is part 

of a cycle.  In this case, we have 

j 

i 
T 

: 

c(l,5)  =   2, Ü 
c(2,6)  =   4, 

c(3,4)  =  lt 
ll 

.   1 

c(4,2)  =  4, 11 
c(5,2)  =  1, U 

c(6,2)  *  1, ü 
c(7,3)  =  1  . o 

• 
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I. 

n I 
i 

i 
i 
.* 

ii 

0 
I 

There is only one cycle in this example, and its elements are 

c(2,6) and c(6,2).  The cyc3ic normal form of C is thus obtained 

by simultaneously interchanging rows and columns 1 and 6. 

Q is then obtained as 

o i'o 0 0 0 0 

4 0,0 0 0 0 0 

Q = PC* -1 _ 
oo'oiooo 

0 4, 0 0 0 0 0 

ü l'O 0 0 0 0 

0 0 [ 0 0 2 0 0 

0 Oil 0 0 0 0, 

which has been partitioned as a cyclic submatrix» the matrix, C and 

submatrices D and G.  The matrix P is 

, j 

000001.0 
0 10 0 0 0 0 
0 0 10 0 0 0 

P = 0001000 

0 0 0 0 10 0 
10 0 0 0 0 0 
0 C 0 0 0 0 1 

. I 

Consider the cyclic submatrix first. We find two eigenvalues 

since C is of order 2, the eigenvalues being A, = 2 and X2 = -2 

As in Section 9, we may reduce C to diagonal form by pre- and 

post-multiplyirg C by S* and S, respectively, where S = PQDA. 

In this case, Pp is the identity of order 2, D has diagonal 

elements 

. 
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drt  =   1 

d, * 1 

and 

A  = C •:) 
Thus, 

• C •:) 
,-1 (1/2        l/2\ 

1/4     -1/kJ 

The remaining S eigenvalues are all zero.  The set of 

principal vectors of grade 1 related to the zero eigenvalues 

satisfy the relation 

iQ = 0 . 

Inspection shows that there are only two such vectors (defined 

uniquely.up to a scalar) and they are 

V (0 0 0 1 -1 0 0) 

and 

tk= (0 0 0 1 0 -4 0)  , 

the vectors t, and t« being the eigenvectors arising from the 

cyclic portion of Q. 

Principal vectors of grade 2, i.e., satisfying 

. 

: 
i 

>• 

: 

r 
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i i 

tQ = 
-y. 

where t, is of grade 1, are now determined.  Let tr be the grade 

2 principal vector which chains to t3.  Then t"3 satisfies 

v -- h 
and tr is linearly independent of t..  Th? vector tr is ob- 

tained by inspection to be (not uniquely) 

y (-2 o i o i -l o) . 

The vector tfi chains to t^ in a similar fashion, and is found 

to be (again, not completely determined) 

t6 (0 1 1 0 1 -1 0)  . 

One more principal vector remains and it must be of grade 

3.  The question is if it chains to tg or t-.  It cannot 

chain to tg because there is no way to premultiply Q by t~ 

and obtain a nonzero element in the first column of the product 

(the -2 element).  Therefore, again by inspection, 

t? = (1/2 -1/4 0 0 0 11)» 

which completes the set of principal vectors. 

The zero Jordan normal form of Q> therefore, can be written 

in the form 

l 
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0 0 I 0 o o 
I 

G  C | 0  0  0 

1 • C  0  0 

C  0 10 c  c 

C 0 0 1 0 

0 0 10 0 1 

0  0 ! 0  0  0, 

where the matrix transformation T into J° is 

T (tl t2  *3 H  t6 V 
the prime indicating a transpose. 

Written out in its entirety, 

T = 

1 2 0 0 0 0 0 
1 -2 0 0 0 0 0 
0 0 0 1 -14 0 0 
0 0 0 1 0 -u 0 

-2 0 1 0 1 -1 0 
0 1 1 0 1 -1 0 
1 1 

Ü c c 1 1 

-tc Fina31y, the matrix exponential e   can be written in the 

closed form 

e"tC = R'1F(~t)R 

* 

or 



kdl 
•• 

: 

-n 

at 

• 

-tc 

/.- 
2t 0   I 0 0 !    0 0 .\ 

/ ' 

2-ti 
e 0 0 0 c 0 

1    • 0    1 1 -t 0 c 0 

^R"1 0 0     i 0 1 c 0 0 

I ° 1 
0     i c 0 1 -t t2/2 

V 0     ' 0 0 0 1 -t 

V 0     | 0 0   1 0 c x/ 

where R = PT. Given initial force component vectors M and N, 

we then obtain solutions to the heterogeneous-force equations 

illustrated above as 

(m n) = (H N)R"1F(-t)R  . 
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Appendix D, 1, 1 

PROOF OF THEOREM1 1 

Stanley Sternberg 

The method of succassive approximations is employed to 

establish the existance of a solution of the matrix differential 

I equation 

: 

H = XA(t), X(0) = I . (1) 

In place of (1), we consider the integral equation 

/' 
X = I • /  XA(s)ds . (2) 

0 

Now, define the sequence of matrices {Xn> as follows: 

XosI 

Xn+1 « t + /  X_A(s)ds •/v 
n = 0,1,..•« (3) 

Then we have 

n = 1,2,... .     <*0 

Xn+1 " X- s ' (x- " x- OA'(8)d8 

Let 

m = o < s < * «A<s)il 

This proof is given in Bellman, R., Introduction to Matrix 
Analysis,   New York: McGraw-Hill Book Company, 196U. 



I ' 

:. 

.. 

I 
r 

u 

be the maximum norm of A(s) in (0, t), where the norm is 

defined by 
N  N 

wi •££.-„ a,,  . 

i=l j=l 

Using (4), we obtain 

K+l * 
Xnll = I'/ <Xn - Vl)A(»)dB« 

-Jt "Xn  " XnÄl|| |lA(s)|Ids 
0 

<m/t|lXn - Xn.1|Ids 

433 

(5) 

(6) 

V for 0 ;< t < t..    Since,  in this  same interval, 

<    f   ||A(s)||ds  < mt 
. 0 

Xl-Xo 

we have inductively from (6), 

n+l.n+1 
X ., - X_|| < m,_.s\f     for 0 < t < t, . 

00 

- - _ -1 

(7) 

(8) 

Hence, the series y.   ^xn+n " xn^ converges uniformly for 

0 £ t < t, .  Consequently, X converges uniformly to a matrix 

X(t) which satifies (2), and thus (1). 

Since, by assumption, A(t) is continuous for t ^ 0, we 

may take t, arbitrarily large. We thus obtain a solution 

valid for t > 0. 

. 

.: 
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I 

t 

It is easily verified that x = qX(t) is a solution of 

|| = xA(t)   x(0) = q , (9) 

satisfying the required initial condition.  We now establish the 

uniqueness of this solution. 

Let Y be another solution of (1). Then Y satisfies (2), 

and thus we have the relation 

t 
X - Y    =     /    Cx<s)  -   Y(s)]A(s)ds     . (10) 

•/ 

Hence 

./* HX-Y||<   f  ||XC»>  - Y(8)||||A(s)||d8   . (ID 

Since y is differentiakle, hence continuous, define 
• 

m,   =    max      IIx "Y || • 
oitit^ 

• 

From (12), we obtain 

*•»/ 

Using this bound in  (11), we obtain 

||X-Y|| <   mi/(/ I|A<*I>IU8JIA(S)II ds 

(12) 

|| X -Y.j| <   mx  /  |j A(8)|| ds       0<t<tir    (13) 
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ml[f  llA(s)Hd8 J 
(14) 

Integrating, we obtain 

»r(/ iiA^s> 11* J 
IIX-Y|<   —Ö r-m—£     • <15> 

Letting n •* «, we see that || X - Y|| £ 0.  Hence X = Y. 

Having obtained the matrix X, it is easy to see that 

qfc(t) is a solution of (9).  Since the uniqueness of the solution 

of (9) is readily established by means of the same argument as 

above, it is easy to see that <JX(t) is the  solution. 
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Appendix D, 1, 2 

PROOF OF CONVERGENCE OF THE MATRIX EXPONENTIAL1 

Stanley Sternberg 

The matrix exponential is defined by means of the infinite 

series 

At Ant-n 

eAT = I + At + ••• + 2-3-  + ••• . (i: 
n! 

Theorem 
The matrix series defined above exists for all A 

for any fixed value of t, and for all t for any fixed A. 

It converges uniformly in any finite region of the complex 

t plane. 

Proof 
We have 

!AV^< iiAfjti" (2) 
n!      — n! 

Since ||A||n|t ln/n! is a term in the series expansion of 

e!rll • ' , we see that the series of (1) is dominated by 

a uniformly convergent series, and hence is itself uni- 

formly convergent in any finite region of the t plane. 

This proof is given in Bellman, R., Introduction  to Matrix 
Analysis,  New York: McGraw-Hill Book Company, 1960. 
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Chapter 2 

ALLOCATION STRATEGIES 

Stanley Sternberg 

2,1   Introduction 

In the preceding chapter, a method of obtaining force 

size versus time solutions for the constant-coefficient, 

heterogeneous-force model was presented.  The method was 

general in that it allowed for various combinations of 

weapon assignments, but special in that all weapons of a 

single class were to be assigned to a single opposition 

weapon class, the so-called 0,1 assignments. 

It is clear that the particular time solution obtained 

from a given set of initial conditions depends upon the choice 

of weapon assignments. A set of rules which govern how a 

particular weapon class is going to be assigned constitutes 

an assignment strategy. These rules are most commonly de- 

termined by attempting to synthesize how weapons would bt 

employed in a real combat situation, but, there being no hard 

and fast rules in the real world, the definition of assign- 

ment strategies in the model becomes a subjective judgment 

on the part of the modeler. 

It is generally true that no two assignment strategies 

yield the same results. Thus, the performance of a particular 

weapon class in a combat model depends implicitly on the 

judgment of the user of how that weapon, and all other 

• .' 
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i = !,...,! CD 

and 

dn^ 

^•S " S eij°i3mi ; 

1 = 1,...,J y (2) 

i 

i 

I 

weapons in the combat model, are "best" employed.  Since 

analysis of weapon systems and force structures using the 

heterogeneous-force model depends on the assignments employed, 

it is of interest to determine good allocation strategies for 

t each force considered, i.e., let each force use its capa- I 

bilities to best advantage. 

This chapter attempts to generate a unique "best*1 set of 

assignment rules, based solely upon a set of weapon charac- 

teristics defined as initial conditions on the model. The 

approach leans heavily on the theory of differential games        I 

as developed by Isaacs (1965), and the reader is referred there 

for a more complete discussion of some of the concepts discussed 

herein. 

i 

i 
! 

2,2    The Heterogeneoua-Foroe Differential Equations J 

The equations describing the attrition process in the 

heterogeneous case, as previously discussed, are i 

I 
—mm 
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: 

where a., and 3.- are the Blue and Red attrition ratess respect- 

ively; e.. is the fraction of the i  Blue group assigned 

to the j   Red group; and h.. is the fraction of the j  Red 

group assigned to the i  Blue group.  Naturally, 

J e.. < 1 and e.. >_ 0 ;  i = 1,... ,: 

PI 13 
(3) 

and 

jL h.. < 1 and h.. > 0 ; j = 1,... ,J .     (4) 
i=i 31      31 

The course of the battle is completely described by the I+J 

simultaneous differential equations together with the initial 

numbers of each Red and Blue groups and the choices of the 

P .i        weapon assignments e.. and h.. throughout the battle.  It is 
13     31 

p assumed that weapon assignments can be modified at any time 
i 

*4 during the course of the battle without penalty and that 

both Red and Blue have full knowledge of the numbers of all 

weapon types at all times during the conflict.  A plan for 

choosing and possibly modifying e.. and h.. in accordance 

with constraints (3) a.  (U) is said to constitute the "Blue 

or Red assignment strategy." 

2.2    Introductory  Conoepts 

We define two (I+J) dimensional row vectors z  and dz/dt 

by 



uuo 

; 

• 

$ - 

z = (m, • • 'm«^ • • *n,) 

and 

_    /dm,    dnu dn..    £n, 
dz/dt =(5r...a?___..._ 

•) 

and denote the k  element of each as z, and dz /dt , respectively 

Using this notation, the heterogeneous differential combat 

model can be denoted as 

dz/dt = F(z,E,H) , (5) 

where F is a row-vector function whose k  element is 

f. (z,E,H) = dz./dt and E and H are the matrices 

E = Ce.^J and H r £h  ] . 

Since the elements of z* must be non-negative, we might 

think of a point z to be in motion in the positive octant E 

of Euclidean (I+J)-space, its motion governed by equation 5. 

The matrices E and H are the "controls" exercised by Blue and 

Red, respectively, for influencing the motion of z.  We will 

speak of a particular position of z in E as the "state" of 
—       .  _+ 

the battle and the path that z travels in E as the "trajectory" 

of the battle. 

We define a surface C in E , called the "terminal surface/' 

such that when z reaches C, the battle is over.  One ex- 

ample of a terminal surface might be all those points in E 

3uch that Red or Blue or both Red and Blue are annihilated. 

- MMMMMMMi 
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Or we might choose our terminal surface on the condition that 

either Red or Blue will retreat from the battle when his 

casualties are greater than 9Ci percent and so on.  We shall also 

require a stopping rule in case z never reaches C ; that is, 

we select some value (T) of time and decree that the battle 

is over if T elapses. 

We assume that it is the dual intention of each com- 

batant to inflict maximum casualties on his opponent while 

minimizing his own, subject to being involved in the engage- 

ment.  The success of each opponent in pursuing his inten- 

tion is measured by a payoff function.  The payoff function is 

assumed to be of the terminal type, that is, if s~ is the end 

point of a trajectory terminating on C, or if the upper 

time limit T is reached, then the payoff is P(z~f).  We will 

adopt the convention that the payoff is made to the Red 

force.  Thus, the Red force seeks to exercise his control 

on the trajectory of z such that the pay; ~t  will be maxi- 

mized when z reaches C or t = T.  Similarly, Blue determines 

his control on the motion of z in such a way that the payoff 

is minimized. 

A rule for choosing a set of apportionments (controls) 

E or H for all possible positions of z constitutes a "strategy," 

i.e., a determination of the functions E(z) and H(z).  Both 

players seek "optimal strategies" E*(z) and H*(z), such that 

for every other strategy E(z) and H(z), the payoff P resulting 

from the application of E* and H* starting from the point z 
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satisfies 

P[z,E*,H]£ P[z,E*,H*] < P[z,E,H*)] .        ü) 

Equation 6 states that if the battle is in stat. e z and Blue 

U(z) = P[z,E*,H*] » (7) 

is simply called the "value" of the conflict, and, if it 

exists, it is unique.  The optimal strategies E* and H* may 

not be unique, but if there are more than one, they are 

equivalent in that they yield equivalent payoffs. 

2.4     The  Main  Equation 

Suppose a saddle point exists and suppose both oppo- 

nents employ their optimal strategies.  Then the expected 

payoff of the battle is the value U of the conflict and its 

magnitude depends only upon the starting point z .  We as- 

sume that the trajectory z(t) in E is piecewise differen- 

tiable.  Then, ov^.r the smooth portions of z(t) the total 

derivative of U(z) is zero, i.e., 

employs an optimal strategy E*, then Red will maximize the pay- 

off by employing strategy H* rather than some other strategy 

H. Similarly, with Red using H*, Blue will achieve the mini- 

mum payoff by employing E* rather than some other rtrategy 
- • 

E.  Such a couple, E*, H* constitutes a "saddle point." 

The corresponding value of the payoff which results when 

E* and H* are employed throughout the battle, 

k 

•' 
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+J  -«L . ff* 
6zk  dt " 

= 0 . (8) 

a 

:: 

Since dz,/dt = f,(z,E*,H*) on the optimal trajectory, then 

denoting 

£       6U uk for IT   ' 
k 

equation 8 becomes 

^fk(zfE*,H») = 0 (9) 

or 
I+J 

mm max 
E  H Z VlF'E'H) = (10) 

k=l 

Note that as long as Blue and Red hold to the optimal stra- 

tegies E* and H*, then the value remains constant over the 

trajectory.  If, however, for example, Blue departs from 

E* to some nonoptimal E, i.e., he fails to minimize the 

left-hand side of equation 10, then the rate of change of 

U is positive , 

I+J 

£ 
k-1 

2^ i^fk(z,E,H*) > 0  , (11) 

and the value of the conflict shifts in favor of Red.  It is 

conceivable, of course, that Red could shift from H* to take 
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further advantage of Blue's nonoptimal play, but then, in 

doing so, he leaves himself vulnerable to further changes in 

Blue's strategy.  The minimax strategy can be considered, 

therefore, to be somewhat conservative, but however, as long 

as Red holds to H*, then no matter what strategy Blue employs, 

red will do no worse than P(z ,E*,H*), and if Blue deüarts o 

from E*, he will do better.  Similar remarks, of course, apply 

to Blue. 

Equation 9 is referred to as the "main equation." 

2.5 The  Determination of Optimal Assignment Strategies 

We begin with a change in notation.  Recalling that the 

elements of z are the m. and n. >  then we write the partial 
i     3 

derivatives of U in the following form: 

SL. v4i i. 1.....I ci:> 6m.   "i 

and 

jjL. Wj5  j > 1,...,J  . ( 13) 

Substituting equations 1 and 2 into equation 10 yields 

mm max 
E       H E v. (-S wJ • £w: (-£ ei3aijmi) 

.!•! \ 3=1 '       3 = 1        \ i=l /. 
=   0 

(14) 
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or, multiplying both sides of (14) by -1 and reversing the 

summation order, 

max mm 
E  H 

J 

LXJ^£viVsi5J-iE 
.3=1    1=1 l-l    3«! 

w.e..a.. 
3 13 13 

= 0  (15) 

A maximum over E of the bracketed expression satisfying the 

constraints of equation 3 is obtained by setting 

e5 13 

1 if w.^. = k 

and w. > 0 

0 otherwise 

max   r    i 

;for i = 1,. 

( 16) 

The minimum over H satisfying (4) is 

n!i = 

lif V3i"k-ft?..,i[VjJ 
and v. < 0 

0 otherwise 

; for j = 1,... ,J . 

( 17) 

In the instance of a tie of the maximum w.a.. or minimum v.3.. 
3 13 1 31 

any apportionment of weapon type i or j between the tying 

target types is optimal.  Also, we have restricted the tra- 

jectory of z" to E+ so any assignment to an empty weapon class 

is not permitted (or we might redefine a., and 3-- such That 

a.. and ß.. are zero when n. or m. are zero, respectively. ) 
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Then, 

h*. = 0 if m. = 0 ; for j = 1,..,,J (18) 

and 

ef. s 0 if n. s 0 ; for i = !,...,! . (19) 

The optimal assignment strategies of equations 16 and 

17 state that all weapons of type i or type j should be as- 

signed to a single opposition weapon class. The choice of 

which weapon class is to be fired upon is independent of the 

number of weapons in the firing class.  The class to be fired 

upon is selected by determining the maximum attrition rates or. 

the marginal utilities of the opposing weapon classes and not 

directly by the numbers of weapons in the opposing weapon 

classes. 

2.6    The Path Equations 

In Section 2.5 it was shown that the optimal assignment 

strategies depend on the values of the partial derivatives of 

the value function U.  Therefore, what is needed is a method 

of determining the v. and w. at each point in the battle 

trajectory. 

We begin with equation 9> 

I+J 

ukfk(z,E*,H*) = 0 

• 
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Differentiating with respect to each z«, U = l,2,...,x+j) 

I 

i 

Sz7 [?vJ • ? 6uk 
2^ uk JF1   = ü  • 

But 

k 6^U 6u, 

S"z7 "   <5z, öz0   =   6z,. 
kw"Ä 

dz. 
and since f^ = —- , equation 20 becomes 

(20) 

(21) 

y 6u*. dzk, y 6f, 

k  * öZä 
= 0 (22) 

or 

du* 
dt ukfkiC«tE*>H*);for 1 • lf...,i+j ,   (23) 

where 

6f, (z,E*,H*) 
f, ,(z,E*,H*) denotes  -*...,  

Equation 23, when expanded into its Blue and Red 

components, becomes 

weapon 
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. 

and 

and 

6fk -j~ =0 ; for l : I+1,...,I+J (29) 

. 

du* 
ST 

and 
I 
I 

du, 

dt u 5 
k 6z u 

Ä  k=T*l 

6f] 
k Sz" j for £ = I+l,...,I+J 

(25) 

But from equation (1) it is seen that for k = 1,... ,1 

J 

6fk 
^ = 0 ; for I  = 1,...,I (26) i 

6f, 

K7 = -H.A.^k.t.i * for l "  I+li--.W •   <27) 

Similarly, from equation 2 , for k = I+1,...,I+J , 

1 ••k-I.tVl.» ; for t « 1.....I (28) 

ii 
n i 

Equations 21* and 25 then become 

:: 
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' ' 

21 • fa \*i-i%i\-i,f> 
for * • 1>--"1   (30) 

3F1    =    &Vk,t-l'k,i-I>     fori»  I*i,...,I*J. 

(31) 

Now letting i -l and j = k- I in (30) and letting j = I  - I and 

i = k in (31), 

dv 

flt 
- = y.  e$.a. .w. : 

jSt     31 3i 3' 
for i - !,...,!      (32) 

dw. 
, , h». fttjVj; for j = 1,...,J .    (33) 

at   APT ij 13 1 

Equations 3 2 and 33, together with equations 1 

and 2, define a system of linear differential equations which 

are referred to as the "path equations" of the combat pro- 

cess.  Equations 1 and 2 describe the process of attrition 

on the number of weapons in a weapon group, while equations 

32 and 33 describe the process of attrition on the marginal 

utilities of the weapons within a weapon group.  The numbers 

and utilities of weapons are related in an interesting fashion 

in the next section. 
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2,7    A  State Equation 

We reintroduce the row-vector notation 

m = (m,>.. .»iru) and n = (n,,...,nj) 

while defining v and w as 

v = (v,,...,v,.) and w = (w,,...,w,) 

Attrition matrices A* and B* are 

A* = [a*.] ; [ejjaij] 

and 

B* = [bjV = [h*i6ji]  . 

The heterogeneous-path equations can now be written in the 

compact notation 

diü/dt = -nB* (34) 

dn/dt = -mA* (35) 

dv/dt = wA*T (36) 

dw/dt = vB*T (37) 

or, in a still more compact form by adding to our previous 

row vector z and a row vector u, 

u = (v,w) 



such that equations 34 through 37 become 
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dz/dt = -zC* (38) 

and 

du/dt = uC*T , (39) 

where the matrix C* of order I+J is 

I B*  0 / 

The solution of equations 38 and 39 have been discussed 

in detail in Chapter 1.  They are given by 

and 

- - - *-te* z = zÄ e o 

- - - .tc*T u - uo e 

tA where the matrix exponential of the form e  is 

tA t2A2 I + tA + L s t3A3 t A    t A 
"TT~  ~TT" 

Noting that 

(40) 

(41) 

(42) 

(AT)n = (An) 
rp 

(43) 

so that 

etA = IT + (tA)T + (4!)T
+(4!). 

= (etA)T (•»!») 
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equation 41  can  be  rewritten as 

or 

u = u  (etC*)T (Uo) 

u     =   er'     \x0
l        . (46) 

Our state equation results from forming the product 

— —T  —  -tC* tC * — T 
z u1 = z  e xu  etu  u (47) 

o o 

or finally 

z ux = zo u * « (4 8) 

The product z ux is a scalar quantity.  Equation 48 

states that if both opponents exercise their optimal strate- 

gies, then zu is invariant throughout the conflict.  Suppose 

that Ze  and u^ are the vectors z and u evaluated at a terminal 

surface. Then, ZfU~ is the terminal payoff.  Our state equa- 

tion is then a restatement of the fact that if both sides 

employ optimal assignment strategies, the expected payoff 

is constant throughout the game.  But the value of the payoff 

when optimal assignments are used is the definition of the 

value of the game, U.  Hence, 

U(7,E*,K*) = 1  uT  . (40) 

The total derivative of U is zero.  Rewriting equation 4 9 

in terms of the components oi  z and u, i.e., 
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u = zkuk 

and differentiating with respect to time gives 

zkdT + at- uk = °   • 

1453 

(SO) 

(51) 

But the second term of (51) is identically zero as it is the 

main equation.  Therefore, 

If.T 
du, 

Zk dt"  = ° (52) 

is an alternate form of the main equation in the case of our 

heterogeneous-force combat model. 

2.8    Three-Dimensional Assignment Example 

The simplest example of a heterogeneous differential 

combat formulation involving the determination of an optimal 

fire allocation policy occurs in the two-cn-one battle.  There 

Blue, who possesses a single weapon type in one group whose 

quantity is m, assigns a fraction e of those weapons to fire 

upon Red's group-1 weapon whose quantity is n, , the remain- 

der of Blue's force being assigned to Red's group-2 weapons. 

The differential equations describing the attrition rate 

of each weapon group are 
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- P- It-  "  P 9*»? 

un- 

it" 
- ea-,m 

i (S3) 

at 
- ( 1 - e) a . m 

where the attrition ccecficients are all nonzero.  The battle ter- 

~..r.cites at i"ime t-, at which point ail the weapons on one side or 

'..•• otner have been annihilated.  (Conceivably, this event could 

tak  infinite time).  At termination, the payoff to red is 

Payoff LXL (tr) + 
i l ' 

d„n,(t, ) - cm(t^).    (5»i) 

Blue's strategy is then to select e through the course of the 

battle as to minimize the eventual payoff. 

7ne terminal surface C for our three-dimensional game is 

the boundary of thw first octant in 3-space.  We Ic*bei these 

bounding planes C , C. , and C.. as either n- , n0, or m are :ero. 

respectively.  We further partition C, into C, and C. and C. 

into C. und C  in accordance with the eventual winner c-i tr.*.- 

..a.T.e. 

From that point in time at which any one weapon ty:  Is 

innihilaced, the eventual outcome is complete\y  determined. 

r. is reduced TO zero first, the battle terminates.  if 

t-it.-.er 7.    or r.-, is annihilated, a sin.pie homogeneous-force, 

:.   • ..." attrition--. r~:ic;er.~ conflict -.r.sjes.  Vh^ eve..tu-.. . . 

. . tai r.ed ." rcr.  ne 5«~ ^are la.- ..•.<.- .... 



o^ün2 -m(tf)
2]  =   &.fo?  -   iij<tf)2]i       for    j *  1,2 (55) 

by setting either mCt,.-) or n.(t<-) to zero.  The boundaries 

of Euclidean 3-space can then be partitioned as shown in 

Figure 1 with the eventual payoffs, H, as determined by 

equations 5U and 55, shown in equation 56. 

PARTITIONING THE SPACE 

Figure I 

nn 



7r2    VW - Vs on  C. 
i 

c / 2 9 

—       « Of»       "  3-1*2 on C2 

V o,m       -   6,nn on  C (55) 

d„ 
9 V 31m1 "       a n2 on C, 

/37        V    " '     1 

d.,n,     +     d,n0 on  C., 

The subscript labeling of the Red weapon groups is com- 

pletely arbitrary, and so we choose to assume the condition 

that 

aißi- V2 • (S7) 

Furtnermore, our eventual results will depend very heavily 

on two cases, these being 

Case I:  a ri > a d 
(£8) 

Case II:  ot^d1 
< a

2
d2 • 

In Case I, our result will show that it is optimal for Blue 

to allocate ail its firepower at Red group-1 whenever n. > 0 

In Case II, the greater value of the Red group-2 weapon in 
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i • • 

the payoff makes it optimal for Blue, at some point in the 

battle, to assign all his firepower at Red group-2. 

The main equation for this conflict is 

dn-, dn? 

J" I v at + wi ar   w min
   I   w   df   '   "1   dt "/   dt e 

°> (53) 

where v, w, and w0 denote TT— , ~— » «•*-" > respectively, and 1       L dm   on.    dn« 

U is the value function.  Substituting into the main equation 

the appropriate derivatives yields 

min UcmCa^w^ - a2w2) - a2
mw? " ^lni + ^2n2^v I =0* (ß°) 

Letting S denote the quantity (a,w. - a2w2), it is seen that 

the minimizing value of e, namely e*, is 

1 whenever S > 0 
e* =   1 (61) 

0 whenever  S < 0 

and indeterminant in the case of S = C.  Obviously, w. and w. 

are always positive, meaning the addition of an extra group-i 

or group-2 weapon at any time during the battle will result 

in a larger eventual payoff to Red.  Thus, Blue's optimal allo- 

cation tactic is simply to assign all of nis firepower at Red 

group-i if cx.w. is greater than oi.w. , i t  j . 

The retrogressive path equations to this game are 



dm 
dt 

da, 

QT I 

dn, 

dT 

dv 
dT 

(l-e*)a„m 

e*a w. - Cl-e*)a2Wr 

(62) 

dw. 

dx = - B,v 

dw, 

d7 62v. 

Thus, 

d? (Vi - W - (a131 - o.2£2)v U3) 

But v is always negative, meaning the addition of a si.hj.lo 

blue weapon at any time during the battle reduces the eventual 

payoff tu Red. Thus, -^- > 0 because a. 3n > «.-.&«•  Hence, 

S is ttrictly increasing with increasing T, except for possible 

jumps at transition surfaces. 
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We begin our analysis by examining trajectories termi- 

nating on C-.  We parameterize Cfi as m = 0, n1 = s^, n 

The value of the conflict on Cg is 

2 = S2 

i 

U = H =  d1s1 + d2s2 

so that on Cr  we have 

6sl x 6U   
6S2 _ 6U 6U   6 U .   x . w         i _ üji - d 

wl = Tr^ = 6s1  6nx ' 5s2 ' 5TT  6s1 

and 

6U   6U  . 6sl . 6U  . 6S2 . 6U  . d w2 = W^  = 3sY  ^5n- J^      &q  ~ Ts^      U2 

The main equation must hold on Cc«  Substituting m = 0 into 

equation 60 yields v = 0. 

Now on Co tne quantity S depends upon Case I and Case II 
5 

Ca3e I 

Since a,w- > a2
w
2 

on Cc> then s > ° and e* = 1 in the 

neighborhood of Cr. The retrogressive path equations of (62) 

become 

m    = Slnl 
+ B 2n 2 

• 
v     = - Vi 

"i= cum 
*i = - elv 

n2 = 0 
"2  = - 82v   , 

(64) 

where (*) denotes S— ( ).  Since S is strictlv increasing with 

increasing T, we are insured that e* = 1 holds everywhere alcn* 
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n 

these paths.  The solutions of (6^) with initial conditions 

taken on C. can be obtained using the method of Chapter 1. 

m = is; + $2S2 

fZJ. 
sinh 

„  -  S1S1 *&2S2       ooh n1 =    cosh 
8, 

n 

(VvT')-^r 

(65) 

'iVv sinh (^i"l   x  ) 

wl =    ^1 cosh (V^TT) 

w T~ [cosh(v^r x) •x] + 

We now examine the space of initial conditions (at time 

t = 0) whose trajectories terminate on Cr-     To do this we w.ü., 

establish the boundaries of this space. 

Substituting s0 = Ü into equations 65 yields those paths 

terminating on the n0-axis.  These paths lie in the m5n,' 

p..ane since s  = 0 

these paths are 

dictates that n~ = ü.  The equations of 

* 

i 
i 
i 

f 
i 
i 
i 
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m V^   £i  sinh (VvT T) 

n, =  sn cosh  / -'aißi 

66 

which are recognized as the retrogressive, constant attrition- 

rate, homogeneous-force model time solutions for the c~-ncit icr. 

that Red group-1 wins.  But these paths define C. , ti*5 C 

is a boundary of our region . 

Paths terminating on the n?-axis are parameterized by 

substituting-s, = 0 into equations 65.  We then obtain 

m = 
2s2 

n 

V^r 
e2s2 

sinh 

cosh 

(Vvr-) 

(67) 

n2 =  s2. 

These paths  satisfy  the  nonparametric  equation 

i^2  +   2Ö2
nln2  "*    V2  =   °    ' (68) 

which defines a quadratic surface, denoted S, which intersects 

Cj. in the n^-axis.  Substituting n„ = 0 into (u8) yields 

i. n n '" - a m  =0 » i 1    1 
(69) 
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which is the boundary between C. and Cu. Thus, paths ter- 

minating on C, lie in a region ß bounded by Cu, Cr 'n.nd S. 

Optimal trajectories in this region are illustrated in Fig 

ure 2. 

Figure 2 

The remainder of our 3-space is bounded by C,, C9, C„ and 

S .  Optimal paths in this region must eventually terminate on 

C, , C' , or C-.  Consider any path in the interior of this region 

Eventually, such a path must intersect a boundary of the region. 

Suppose an optimal interior trajectory intersects C^  at time 

! 

I 
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To at the P°in"t m = r, nx  = s^ n2 = 0.  We must conclude 

that at time T + AT, e* » 0, for if e* = 1, the path would 

not reach &. 

Now on (L  we have 

so that 

u s H = -     Ja r
2  * c : 

j*i    Vair - ßisi 

and 

W.(T ) =    Li 1 o 

fT    V°lr' - ^ 

Since the main equation must be satisfied at the 

point ( r, s-, , 0) on (?3, we find w~ to be 
i 

W2(To) 

JS7 slSl 

air " ^isi 

From equations 71 and 7 2 it is seen that 

*l"lxlo'      2 2  o 

making S(T ) = 0. 

(71) 

(72) 

OLW-(T_)  = a w (T ) , (73) 
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We may solve for the partials of the value function 

a: i • AT from the retrogressive path equations with e* = C, 

v =  -a-w., 

W,  =   - ß , V 
i       x 

(74) 

and obtain 

w , -  -o ,v, 

v ( T  + AT) v ( T )  - ot w , v i ,) A 

w., (T  + AT ) 1  o W , ( T ) |3, v( i )AT (75) 

W0(T  + AT) I     o W , ( T ) 
I      0 

- $.V(T.)AT 
/      v.' 

'hen, 

S(T  • AT) 
o alwi(To AT ) - a0w0(r  + AT) , 

c     C      O 
(7 G) 

wh i v-h, using equat io:~. 7 3, reduces to 

CT  • AT) (a - b- - a -j : V(T_ )AI (77) 

but V(T ) is,  negative on C, making S(T  + AT) positive, whic' 
O 3 O 

,' i v-i e* = 1 by equation b*.  But this contradicts our or;,'/_na 

assumption that o* = 3.  Hence, we must conclude that there 

are no optimal tra^eccories reaching C except those t;. •: 

originate in C~.  finaliv, It will be   noted that our con- 

Lusior. was reached independent of Cases . and II. 
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By a similar analysis VIM  conclude that optimal paths can- 

not leave by way of S.  We know that e* = 1 yields paths paral- 

leling S; thus, we may assume that if there existed an optimal 

trajectory intersecting S from above, e* = 0.  But e* = 1 is 

optimal on S, hence, if e* = 0 intersects S, then S must be 

a switching surface and S = a,w., - a9w, must therefore be zero 

on S. Again the analysis given in equations 7U through 7 7 

applies yielding the contradiction that S(x ) = 0 implies 

e* = 1 at T + AT. 
o 

Wo must conclude then that optimal paths can only leave R 

by way of C-. and C«.  The necessary form of such paths is 

obtained by integrating the retrogressive path equations 

with e* = 1 and initial conditions m = r, n, = 0, n« = s?. 

We then find 

m    =    r 

n, 
i 

coshfJZT     T ] +    -2-^       sinh/JST Pi      T 

) 

(78) 

^^\  • r       sinhfja^l       ) 

n 

for all  paths  in the region bounded  by d ,  C0,  C-.  and .$. 
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The surface of paths terminating on the boundary between 

C, and C„  may be found by setting ^oT r = */32  
so -i-n (78) 

and eliminating the variable T or by writing the state equation 

from the retrogressive path equations cf equation 64 directly. 

The result is the cone K given by 

a-jC^m - a2
ßini2 " 2o>2

ß2nlr-2 " alß?n22 = ° ' (79) 

which also intersects C in the boundary between C,  and C. , 

as can be seen by substituting n» = 0 into equation 79. 

For initial points above this cone, Blue wins, that is, Blue 

annihilates both Red weapon groups.  Cone K partition^ the 

region above S  intc R?> wn^cn lies between S and K, and 

R~, which lies above K   . 

The Case I solution is illustrated in Figure 3. 

Case  II 

We now turn our attention to Case II and begin by con- 

sidering paths terminating on Cr.  In the neighborhood of 

Cr, e* = 0 is optimal and the retrogressive path equations 

are th :refore 

i 
i 
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n. 

CASE T  BOUNDARY SURFACES 

Figure 3 
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» =  B1n1 t ß2n2 

nx =  0 

nj = cum 

V a2w2 

"l 
= - Bxv 

"j 
= - ß?v. 

(80) f 

Solving equations 80 with Cg parameterized as m = 0, n = s 

n2 = s2 and initial conditions 0, d±  and d2 for v, w and 

w2, respectively, yields 

m = 
B..J • $2s2 

iinhUn262    T1 

nl s sl 

n, 
61S1  +  82S2 
 ^ oo 

V    r    - 
d2>^ 

w. 

w, 

d28 
i    [cosh   (^ T)   - ll    - da 

(VV"2 T)     • d«    cosh 

(81) 

I 
" 
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We desire to establish the boundaries of the space 

swept out by optimal paths terminating on C^.  Substituting 

s1 = 0 into equation 81 gives paths terminating on the 

ru - axis.  These paths lie entirely in the m,n« plane since 

s, = 0 requires that n-, = 0.  These paths are described by 

ß2S2 m   r _      smh 

^V2 
({^7 T) 

n1 «     0 (82) 

Ti2   ~     B2      cosn (f?7 ") 

Path terminating on the n^-axis are parameterized by 

substituting s« = 0 into equation 81.  The resulting 

equations are 

ßlsl 
m =     smh 

Vv7 (Vv7 T) 

n^ = sl (83) 

0,S 
n 2 SJ. [co, (^57 T)-I] 

and tney define a quadratic surface U whose nonparametric 

representation is 
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2n2<  •  23inin2 - a2io- c. (84) 

Finally, we encounter a transition surface T owing to 

the fact that S is negative on C& but dS/di is positive, 

leading eventually to S = C.  From equations 80 we obtain 

dw. 

dw~! 

whose solution is 

*T (85) 

Ö2(w1 - dx)  =  81(w2 - d2). (86) 

Equation 86 coupled with the fact that a,w, = a„w2 on T 

results in 

w, Vgld2 - W 
(al*l " a?ß2) 

(87) 

on the transition surface.  Then from equations 81 and 87, 

coshlJa282  T ) a 
) 

VBid2 - W 
d2(a1ß1 " «2B2> 

(88) 

. 

-   1 

i 
I 
I 

defines T in terms of T.  The existance of the switching 

surface is guaranteed because a2d2 > oud^ and a-^ > d2ß2 

implies ^-j^l > &2d2* 

: 
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This makes the right-hand oide of (88) greater than one. 

For values of T greater than that T satisfying equation 83, 

S > 0, making e* = .1 the optimal tactic. 

We will not compute the equatior.. of the transition surf.ic?, 

but rather determine its boundries.  To determine the inter- 

section o^ T with the m,n0 plane, we substitute equation 88 

into equation 82.  Let 

e = cosh ( J«9s? T j =  __________ .  C89) T 1 = a, (g.d.  -   eod. ) 
'V2 

1               1        1                               c          *. 

Then the intersection is given by 

„ 82S2    XT 

(90) 
n0 = s06  , 

which is a parameterization of the straight line L given by 

r K 
V1 " a2  «ft 

EL. 
n2      w    d    w-2 

(91) 

Noting that W1 - —x is less than one, the slooe of  L 

(which is dm/dn«) is less than the slope of the boundary 

between C, and C~.  L therefore lies entirely in C-, . 
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In a similar fashion the intersection of T and U are 

described by equations 8 3 and 8 9 as 

m i 31*8 " - 
n. 

V°2 *2 
(92) 

n, r- (e - i) ni 

which is a ray M from the origin.  The region R, bounded by 

C&> T, and portions of C, and Ü is illustrated in Figure 4. 

• • 

i 

! 

! 

REGION R. 

Figure 4 
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Above the transition surface T, e* = 1 is the optimal 

tactic.  Optimal paths intersecting T fill a region K? whose 

boundries we now determine. 

Optimal paths intersecting T in the line L satisfy the 

path equation 64 with initial conditions determined by 

equation 91 of the straight line L together with y, = 0. 

From equation 64 we obtain 

dm 
dnn 

eini: e2n2 
(93) 

which upon integration with initial conditions taken on L 

becomes the surface S given by 

°20ini2 + 2a202Din2 + al02 (2 " ^} '2 
? 

- a1 a2m * -.  0. (94) 

Substituting n? = 0 into (94) shows that S intersects C  in the 

boundary between C3 and C. as well as in line L.  S therefore 

forms a cone, above which the solutions of Cases I and II are 

identical. 

Integrating equation 93 with initial conditions tak^n on 

the ray M completes the boundries of R2.  The resulting surface, 

denoted W» satisfies the equation 

al*l 

a * 
2 2 

(e2 - 1) - 2(8 - 1) nx
2 + ^ß2n1n 2 - a^ ^ = 0. 

(9J>) 
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fa 2  

so that assuming optimal paths intersect C. at time T„ with 

e* = C, 

da r 
V(t0) •  X (96) 

y[K ^i'^ -ai r
2 

This surface also intersects the plane m, n_  in the boundary 

between C~ and C.   .     We reason this since W contains optimal 

paths with e* = 1 and intersects the origin.  In the plane 

m, n  there is only one path which intersects the origin, 

and that is the path along the C., C, boundary.  Therefore, 

the C~, C. boundary lies in W.  The boundries of region R? 

are therefore T, 5, and W. 

Above the surface S are regions R~ and R, .   separated by 
- - 

the cone K  described by equation 79.  Figure 4 illustrates 

the bounding surfaces for Case II. 

All paths are now accounted for except paths in the 

region R&, bounded by Ü, W, and C^.  We again employ the logic 
I* 

that optimal paths in Rr must eventually leave R^.  Our analysis 

proving that optimal paths cannot leave R. by way of C. is 

identical to our argument in Case I that optimal paths could 

not leave by way of C..  On C. we have 

« 

I 

U -    s   X  •  */sns,
2 - a,r2 
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CASE II  BOUNDARY SURFACES 

Figure 5 
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=mc 

u , ß - S .. 

W.(T   )      =     —~ . (97) 

f-{ -   a. r 

T>m   the main ecuation we obtain 

W 2 ( T o) =  - y,   i J I- i 

^{h   Jhsi2 ' air? 

which  demonstrates  that 

0LW-<T    )   =   a   w   (T   ) (99) 
1  1     o 2   /     o 

on  Cu. 

The remainder of our argument is given by equations 7H 

through 77, which do not depend upon either Cases I or IT, 

and hence we conclude that there are no optimal paths leaving 

R. by way of C . 

There are no paths leaving R5 by way of W, for e* = 1 gives 

paths paralleling W and e* = 0 gives paths moving away fror. U1. 

We therefore must include that all paths leave Rr by way of U 

withers 1, for e* = 0 gives paths paralleling U.     The surface U 

is therefore a transition surface, at which point e* = 0 becomes 

the optimal strategy.  In the language of Isaacs (1965), (1 is a 

universal surfece, meaning that paths intersecting Ü stay in U 

inc finally intersect the n.-axis.  This is all formalized by 

demonstrating that indeed S - 0 on L'. 

i 

- * 



Paths in U with e* = Q satisfy the main equation,  using 

the solutions of path equations 8 3 in Ü  yields 

v ^'"id?1 +  w2 ar • v ßisicosh (Vv^T) 

W28lSlVa262 +     /    "   ^   ^-^—L    sinh    ( Jet Ö '       9XIUJ      I     ^^2      2 

(100) 

Paths in C with e* = 1 also satisfy the main equation.  Con- 

sider such a path intersecting U at the point P at time TQ 

where P satisfies equation 83.  The main equation TQ + AT 

becomes 

v31s1 cosh ( Va2ß2 T ) + Wlalm = vßlSl  cosh (Va262 T ) 

+  lC>1 1  1 sinh ( Jtt9ß~ T ^ 

V^7        ^      } 

-   0. (101) 

Subtracting equation 101 from equation 100 gives 

W,dn 3nS W231S1 yv, sinh (Va2ß2 T 
3
3 

sinh ( Ja939 xV =  0. 

\ _ wlalplsl 

(102; 
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which reduces to 

a2w2 -    a1w1 (103) 

which proves our contention that Ü is a switching surface 

2.9    References 

Isaacs, R., Differential Games, New York: 
Sons, Inc., 1365. 

John Wiley & 

~ 

'" i 

u 



479 

. . 

Chapter 3 

NUMERICAL SOLUTION PROCEDURE, 

VARIABLE-COEFFICIENT MODEL 

George Cooper and George Miller 

This chapter presents a simplified numerical solution 

procedure for solving the general heterogeneous-force battle 

model described by equations 1 and 2 in Chapter 2, Part A. 

The procedure is essentially a recursive time-stop solution 

of the attrition equations.  The model describes spacially 

distributed forces, by groups, with the Blue force defending 

and the Red force assaulting.  The forces are assumed to be 

of approximately battalion size.  They may employ both direct- 

and indirect-fire systems such as small arms, personnel car- 

riers, tanks, antitank guns and guided missiles, mortars, 

artillery, and rockets.  The general flow of the mcdel opera- 

tion is given in Figure 1.  Specific operating details, in- 

puts, rules of engagement, and the computer program are 

given in the following sections. 

3.1    Attrition 

The attrition equations are approximated in the 

computer computations by 

ANj « "^AiJEiJIuMiÄT  J = 1,2,...,JJ     (1) 

Notation changes have been made in this section to facili- 
tate consistency with the computer program. 
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t 

BEGIN A NEW 
TIME INCREMENT 

CALCULATE APPROPRIATE RANGES 
AND ATTRITION RATES 

COMPUTE THE DYNAMIC ASSIGNMENT 
PRIORITIES AND CHOOSE APPROPRIATE 

TARGETS 

CALCULATE ATTRITION ON 
BOTH SIDES AND ASSOCIATED 
AMMUNITION EXPENDITURES 

TEST FOR BREAK POINTS 

fi 

j 

. : 

Figure 1  Overall Flow Diagram for Numerical 
Solution Procedure 

; 

!. 
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AM!    ~   "     £    B.TTHTTK.TTN.TFTAT       J    ~    1»2,...,II    ,     (2) 
J 'JI"JI^JI"J J 

!  1 

i 

where 

ATT(BTT) = the attrition rate for the I   (J  ) B3ue 

(Red) weapon or the Jxn (I  ) Red (Blue) 

weapon, 

AMj = the number of Blue I-group losses in the time 

increment AT, 

ANj = the number of Red J-group losses in the time 

increment AT, 

E-J-JCH,,) = Blue (Red) allocation factors, 

ITJCKT-J.) = Blue (Red) intelligence factors, 

Fj = the average fraction of time that the J-type 

weapons are not advancing. 

The Fj factor is included to account for the fact that ad- 

vancing weapons usually do not fire.  The model assumes that 

attrition is a continuous process, and accordingly, the at- 

trition coefficients are adjusted to account for the down 

firing time. 

The attrition of forces throughout the battle is determined 

by recursively computing the losses over the discrete time 

increment AT using the surviving numbers of units M,. and N- at the 

the end of the previous time increment.  The reader is reminded 

that, for area-lethality systems such as artillery, the attrition 

rate is itself a function of the surviving number of targets 

[B, 5.0]. 

It was noted in Section 1.2, Part B, that the attrition 

rates are functions of range.  This feature is incorporated 
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by assuming that the attrition rates (computed by the methods 

described in Part B) are polynomial functions of the range, 

RJJ, between force groups I and J. A polynomial regression 

of the form 

. 

• 

... 

AU(RIJ> - AOU + AiuRu+ A2uRi.j 0 

• A3IJRI
3
J • A^jRjj . (3) 

iü used.  The coefficients of this H    -order polynomial are 

input data for the model. 

Following the results obtained in the previous chapter, 

the assignment parameters E,j and H.- are (0,1) fn the model. 

They are, however, implemented as single arrays Ej  and Hj.  Ej 

is the index number of the target on which Blue group I is 

assigned to fire, and Hj is the index of the target on which 

Red group J is assigned to fire. 

I! 
3,2    Range  Considerations 

The initial X and Y coordinates of each weapon group are 

input data to the model.  These are used to calculate the ranges 

between weapon groups.  The Blue defenders are assumed to be 

stationary; hence, their coordinates do not change. The Red 

attackers are assumed to attack due north; hence, only their Y 

coordinates change.  Further, all Red weapon groups which move 

are assumed to move at the same constant velocity. 

L 
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The basic program computes slant ranges RTJ between I and 

J groups at each time increment. A switch is provided in the 

program, however, which facilitates the placing of all Blue 

units essentially on line on the FEBA.  It implies that each 

group in a force fires on its assigned target group, which is 

located at a range DFEBA(J) from it rather than the slant- 

range RJJ.  DFEBA(J) is the distance of Red groupJ from FEBA. 

This parameter is included in the periodic engagement status 

reports of the basic program as an indicator of the approximate 

positions of the Red forces.  If all the Red forces begin the 

engagement at positions equidistant from the FEBA, then use 

of the switch has the effect of each weapon group firing on 

its assigned target group, which is located directly in front 

of it.  This procedure simplifies the model and reduces the 

computation time. 

3,3    Area-Fire Effeats 

Weapon groups located in the same vicinity are given the 

same (X,Y) coordinates for purposes of range computations. 

Hence, for area-fire weapons, the attrition is calculated not 

only for the target specifically assigned but for any other 

targets which have the same location.  Under the assumption 

that weapon groups do not 8h°«ix! each other from area-fire 

weapon effects, the appropriate attrition rates are indepen- 

dently applied to each target group. 
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'6.4    Ammunition  Considerations 

Ammunition expenditures are calculated at each time in- 

crement.  Required input data are the firing rates for each 

th 1 (I,J) combination, as 4 -order polynomial functions of range.4" 

For all but indirect firing weapons, the firing rates are 

easily obtained from the attrition rates for impact-lethality 

systems. For indirect-fire, area-lethality systems, the firing 

rates are inputs to the attrition-rate model, and assumed known. 

3.5    Rules of Engagement 

3.5.1    blue  Target Assignments 

At the beginning of each time increment, all Blue groups 

are assigned a target.  The new target may be the same as the 

previous one, a different target or the "null*1 target, i.e., 

no target at all.  Eligible targets are comprised cf those 

targets within range which are not externally prohibited. 

Targets within range are those within the open-fire range and 

beyond the cease-fire range.  Externally prohibited targets 

for a given weapon group are those for which a zero attrition rate 

has been submitted. 

An assignment is made among the eligible targets according 

to cne of two procedures.  The first procedure is that the 

weapon-target combination in question have the highest product 

AIJBJI for a11 eli8ible Rea targets of group J.  This criterion 

is an approximation to the marginal effectiveness measures 

developed by S. Sternberg in the previous chapter.  If all 

See Section 3.1. 

! 
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eligible targets are unable to return fire, then all of the 

above products will be zero.  In this case, Blue group I 

is assigned to fire on that J for which A-, is maximum.  An 

optional assignment via a priority table P(I,J) is also avail- 

able.  This table is constructed as follows.  For each Blue 

group I, one enters in the corresponding row of the P matrix 

the Red groupsJ in order of decreasing priority.  Attrited 

weapon groups are not assigned a target, and live weapon groups 

are not assigned to fire at dead ones. 

3 .5.2    Red Target Assignments 

After each Blue group is assigned a Red target for the 

duration of the time increment, each Red group is assigned to 

fire on either an eligible Blue target or on the null tar- 

gets.  To be eligible, a Blue target must be within range 

(by the definition of 3.5.1), not externally prohibited, and 

must be detectable, A Blue weapon group is not detectable 

by a Red weapon group unless it is firing, or unless the Red 

group has advanced to within a specified range , RSTAR, of the 

Blue group. First consideration is given to selecting a 

target among those which are both eligible and firing on 

the Red group in question.  Among such targets, Red group ^ 

is assigned to fire on the Blue group I for which the product 

BTTATT is the highest.  If Red groupJ is not being fired 
u 1  iu 

upon, then it fires at the eligible target I for which BJJAJ, 

. 
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and checked after each time step.  When any 

one of the Red force groups reaches the FEBA, 

the engagement is terminated.  The model does 

not include final protective fires or the 

commitment of reserves. 

(2)  Red Attrition Limit Reached 

A force group may be designated as a break 

group or nonbreak group in the input data. At 

the end of each time step, the total percen- 

tage of casualties for all break groups is 

checked against the specified allowable per- 

centage.  If the allowable percentage of cas- 

.- 

is the highest.  If all eligible Blue groups are unable to 

return fire, then all the above products will be zero.  In 

this case, the eligible target for which BJJ is the highest 

is selected.  If there are no eligible targets, the null tar- 

get is assigned. An optional assignment via a priority table 

Q(J,I) is also available.  This table is constructed as 

follows . For each Red group J, one enters in the corresponding 

row of the Q matrix the Blue groups I in order of decreasing 

priority.  Attrited weapon groups are not assigned a target, 

and live weapon groups are not assigned to fire on dead ones. 

3,6    Stopping Rules 

A number of optional stopping rules are provided 

for in the model.  These include 

(1) The Red Attackers Cross the FEBA 

The distance of each Red force group from the 

FEBA, initially given as input, is decremented | 

i 
! 

I 
: 

i. 
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ualties is exceeded, the attacking force breaks 

and the engagement is terminated. 

(3) Blue Attrition Limit Reached 

The Blue defender1s attrition is measured in 

the same manner as for the attackers.  When 

the allowable percentage of critical or "break 

group" forces is exceeded, the Blue defense 

breaks and the engagement is terminated. 

(4) Engagement Time Limit Exceeded 

When a specified maximum duration for the 

engagement is exceeded, it is terminated re- 

gardless of current force strengths or posi- 

tions . 

3. 7    Input  Data 

Data cards must be submitted in the order shown in this 

section.  The varaibles must be in the order shown on each 

card, and in the FORTRAN format indicated in parenthesis af- 

ter each variable name. An attempt has been made to indicate 

the number of cards of each type required using the notation 

[ ] to denote truncated integer division.  Meters and seconds 

have been taken as the standard units for distance and time. 

As long as the user is consistent throughout a data set, however, 

any other units may be used.  Only the printed comments depend 

on the units chosen. All cards begin with column one. 

A glossary of symbols is given in Section 3.9. 



U -. r 

(1)  Header Card 

11 (13 ) , J J (13 ) , DE LTAT ( F6.1) , V (F7 .3 ) , 

RSTARÜ G . 1) ,N'STEP( 13),BBREAK(F3 . 3 ) , 

RBREAK(F3.3),TST0P(F7.2),LINE(I1), 

PRIOF (ID, ENGRAN (F6 .1),RUNITC 13) 

There is only or.e header card required. 

(2)  Blue Force Specii .cations 

M(F-.Q),XI(F7.1),YI(F7.1),IM(I1), 

BBT(Ii),UX),BID(A8) 

There should be '*11** of these cards. 

(3)  Red Force Specifications 

N(F4.0),XJ(F7.1),YJ(F7.1),IN(I1),RBT(II), 

(1X),RID(A8),4X,STAT(I1) 

There should be "JJ" of these cards 

(»+)  Distance from FEBA 

DFEBACF6.1) 

There should be 12 of these per card for 

"LJJ/123+1" cards. 

(5) Attrition Rate Modifier to Reflect Movement 

ARMTRMCF4.3) 

There should be 18 of these per card for 

"LJJ/183 + 1" caixlsv 

(6) Blue Open-Fire Ranges 

SCF6.1) 

For each successive B^ue grcup, there should 

be a set of "[JJ/123+1" cards containing 

the open-fire ranges (12 per card) against 

each Ked group. 

i 

. 
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(7) Red Open-Fire Ranges 

T(F6.1) 

For each successive Red group, there should 

be a set of "[II/12]+1" cards containing 

the open-fire ranges (12 per card) against 

each Blue group. 

(8) Blue Cease-Fire Ranges 

BCFIRE(F6.1) 

There should be 12 of these per card for 

"CII/123+1" cards. 

(9) Red Cease-Fire Ranges 

RCFIRE(F6.1) 

There should be 12 of these per card for 
,f[JJ/12]+l" cards. 

(10) Blue Attrition and Firing Rates 

A0(E8.3),AKE8.3),A2(E8.3),A3(E8.3),/ME8.3), 

AA0(E8.3)>AA1(E8.3),AA2(E8.3)>AA3(E8.3),AA4(E6.3) 

There should be "II x JJ" of these cards. 

They are read in sets of "JJ" for each suc- 

cessive Blue group. 

(11) Red Attrition and Firing Rates 

B0(E8.3),B1(E8.3),B2(E8.3),B3(E8.3),BU(£8.3), 

BB0(E3.3),BB1(E8.3),BB2(E8.3),BB3(E8.:), 

BBU(E8.3) 

There should be "JJ x II" of these cards. 

They are read in sets of "II" for each suc- 

cessive Red group . 
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(12)  Blue Intelligence Coefficient 

BKFU.3) 

For each successive Blue group there should ap- 

pear 18 per card for "[JJ/18]+1M cards. 

For each Red group there should be at least one 

card [Format (36I2,8X)] containing 36 Blue group 

numbers arranged in decreasing order according to 

their priority as targets for the Red group. 

3.8    Interpretation of Output Engagement Status V.eports 

At user specified intervals, engagement status re- 

ports are printed.  Such reports are also given before the 

engagement begins, and at the break point.  Proper inter- 

pretation of these reports depends on some knowledge of the 

program logic.  Key points to remember are the following: 

(1)  No computations are carried out before the initial 

report.  Hence, this should reflect the input data 

" 

(13) Red Intelligence Coefficient 

RHF4.3) 

For each successive Red group there should ap- 

pear 18 per card'for "Cll/18] + 1" cards. 

(14) Blue Priority Table (Required if PRIOR*0) 

P(II,JJ) 

For each Blue group there should be at least one 

card [Format ( 3612,8X)j containing up to 36 Red 

group numbers arranged in decreasing order according 

to their priority as targets for the Blue group. 

(15) Red Priority Table (Required if PRIOR*0) 

'•• 

i 
• 

Q(JJ,II) 

a 

. 

i: 

I 
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i 
• 

(2) 

(3) 

(«O 

(5) 

if the data was correctly submitted. 

Since no targets are assigned to attrited weapon 

groups, a target assigned to an obviously anni- 

hilated weapon groups implies that that group was 

annihilated in the current time increment. 

Since attrited weapon groups do not advance, the 

distance from the FEBA for such groups reflects 

the approximate distance at which that group 

becomes annihilated. 

Distance from the FEBA.is a guideline only, and does 

not necessarily reflect the range between a Red 

group and any Blue group. A unit may be very close 

to the FEBA, but still out of range of some of the 

blue weapon groups. An exception to this rule is 

when LINE is nonzero. 

Because of area-fire effects, some forces may be 

noticed to decrease in numbers, even though they 

have not directly been the target of any weapon. 

The number of time increments between status reports 

is specified as input and is multiples of time 

increments in which actual battle activity takes 

place.  Increments in which no losses occur are 

not counted for purposes of determining 

when the next printout occurs. 

"> 
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3, 9     Program Glossary 

3,9,2     Dimension Variables 

An "I" subscript always implies that I = 1,...,II. A 

"J" subscript always implies that J = 1,...,JJ.  Both II 

and JJ must not exceed ^C.  Hence, all the arrays are restricted 

accordingly 

ARRAY NAME DEFINITION 

A(I,J) 

A0(I,J),AMI,J),A2(I,J), 

A3(I,J),A»*<I,J) 

AA0(I,J),AA1(T,J), 

AA2(I,J),AAb(I,J), 

AAU(I,J) 

ARMTRM(J) 

B(J,I) 

The Blue on Red attrition rate 

The 0th through 4th coeffic- 

ients, respectively, of a 

4 -order polynomial to pre- 

dict A(I,J) as a function 

of range 

The 0th through 4 th coef- 

ficients, respectively, of 

a '» -order polynomial to 

predict Blue firing rates 

as a function of range 

A fraction to reflect the 

proportion of time that Red 

group J fires while advancing 

The Red on Blue attrition 

rate 

;: 

Ü 

Ü 
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I 
I • 

fl 

D 
Jl 
.i 

J 
fl 

-? 
.1 

II 
Ö 

:! 

0 

B0(J,X)9B1(J,X), 
B2(J,I)>B3(J,I), 
BU(J,I) 

BB0(J,I),BB1(J,I), 
BB2(J,I),BB3(J,I), 
BB4(J,I) 

BBTCI) 

BCFIRE(I) 

BEXP(I) 

BKI) 

BID(I) 

The 0th thrc '"4th ccef- 

DFEBA(J) 

ficients, respectively, of 

a 4 -order polynomial to 

predict Red attrition rates 

as a function of range 

The 0th through 4th coef- 

ficient, respectively, of 

a 4 -order polynomial to 

predict Red firing rates 

as a function of range 

A flag telling whether or not 

Blue group I is a "break group," 

1 s yes, 0 = no 

The minimum range at which 

Blue group I can fire 

The cumulative Blue ammuni- 

tion expenditures 

The Blue intelligence co- 

efficients 

Contains an 8-byte alpha- 

betic code for identifying 

Blue group T 

Initially, the data giving 

the distance of Red force 

J from the FEBA, updated 

each time step 



 " 

U9U 

E(I) 

H(J) 

IM(I) 

IN(J) 

K(I,J) 

M(I) 

MM(I) 

N(J) 

R(I,J> 

RBT(J) 

RCFIRE(J) 

REXP(J) 

* 

The Red target number of 

Blue group I 

The Blue target number of 

Red group J 

Mode of fire of Blue group 

I, 1 : direct, 0 = indirect 

Mode of fire of Red group 

J, 1 = direct, 0 = indirect 

Range Constant = CXI(I) - 

XJ(J)J2 

Number of surviving Blue 

group I 

Number of surviving Blue, 

group I at the end of the 

previous time step 

Number of surviving Red 

group J 

Range between Blue I and 

Red J 

A flag telling whether or not 

Red group J is a "break group," 

1 = yes, 0 = no 

The minimum range at which 

Red group J is allowed to fire 

Cumulative Red ammunition 

expenditures 

- - 

D 
: 

i 

ii 

a 

i 



Ii H   •••  I i~ 

495 

D 
a 

ü 

! 

I 

P(I,J) 

Q(J,I) 

RI(J) 

RID(J) 

S(I,J) 

STAT(J) 

T(J,I) 

es 

Blue on Red Priority Table, 

P(I,J) = Red target group corres- 

ponding to I and J, where I denotes 

the Blue weapon group and J denot 

vhe priority of the Red target 

group to which Blue is to be 

assigned (J=l, denotes the 

highest priority) 

Red on Blue Priority Table, 

Q(J,I) = Blue target group corres- 

ponding to I and J, where J de- 

notes the Red target group and I 

denotes the priority of the blue 

target to which the Red group is 

to be assigned 

The Red intelligence co- 

efficients 

Contains an 8-byte alpha- 

betic code for identifying 

Red group J 

Range at which B3ue I can 

open fire on Red J 

A flag telling whether or not 

a Red group J remains stationary 

during the engagement, 1 = yes, 

0 c no 

Range at which Fed J can open 

fire on Blue I 

These variables are used to reflect (a) open-fire ranges 
based on doctrine and/or (b) open-fire ranges based on 
weapon capabilities, and shcuid not exceed the ranges con- 
sidered in the attrition rates. 
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XXCI) 

XJCJ) 

YI(I) 

yj(j) 

X position of Blue group I 

X position of R*d group J 

Y position of Blue group I 

Y position of Red group J 

3, 9, 2    Nondimension  Variables 

VARIABLE 

BBREAK 

. 

DELTAT 

EN6RAN 

II 

JJ 

LINE 

NSTEP 

RBREAK 

DEFINITION 

The fraction of "break groups" 

which must be lost for Blue to 

break off the engagement 

The size of the time step in 

seconds 

Range at which the engagement 

begins 

The total number of Blue 

weapon groups 

The total number of Red 

weapon groups 

If nonzero, causes DFEDA(J) 

to be used for the range be- 

tween Red group J and all 

Blue groups I 

The number of time incre- 

ments between printings of 

the engagement status report 

The fraction of "break 

groups" which must be lost 

for Red to break off the 

engagement 
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D 
f" 
i 

I 

a 

D 
D 
fl 

D 

.: 

i I 

RSTAR 

RUNIT 

PRIOR 

TSTOP 

V 

The range within which a Red 

group may detect a Blue target, 

whether or not the target is 

firing 

The index of the mobile  Red 

weapon group which opens the 

engagement when its distance 

to the FE3A is less than the 

engagement range (ENGRAN). 

If nonzero, the priority tables 

given by P(40,40) and Q(40,40) 

are used to make weapon assignments 

The input time (in seconds) at 

which the engagement will termi- 

nate if no other break points 

are reached 

The average velocity of the at- 

tack 

3.10   Program Logic 

Numbers in parentheses refer to program line numbers. 

(1,81)    Read data 

(82,100)  Initialize 

(82,87)    Add up the initial numbers of "break" groups 

(88,83)    Zero out ammunition expenditures 

(94,97)    Print out initial forces 

(98,100)   Calculate range constants 

(101,154) Prepare for assignments 

(101,105)  Update clock, check for time limit ex- 

ceeded 
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(106,109)  Zero out all assignments 

(110,115)  Update DFEBA and Y coordinates 

(117,136)  If the line switch is not on, calculate 

(229,242)  If "Sternberg coefficient" is all zeros, 

test for greatest attrition rate 

(243,249) Calculate Red ammunition expenditures 

(2 50,261)  Combat activity check 

-1 

P 
r slant ranges and attrition rates between 

all pairs of eligible, nondefunct targets 

(137,154)   If the line switch is on, calculate range 

by equating it with DFEBA, and calculate 

attrition rates between all pairs of eligi- 

ble, nondefunct targets 

(155,193)  Make blue on Red assignments £ 

(155,166)  Assign using Priority Table P(II,JJ) 

(167,178)  Test for greatest "Sternberg coefficient" 

i 

i 
a 

(179,187)  Test for greatest attrition rate (if T 

necessary) 

(188,193) Compute Blue ammunition expenditures j 

(194,242)  Make Red on Elue assignments 

(194,206)  Assign using Priority Table Q(JJ,II) J, 

(207,22 2)  Test for greatest "Sternberg coefficient" 

among those firing at you i 

(223,228)  Test for greatest "Sternberg coefficient" -* 

among those detectable targets il 

•'\ 

> 

If no combat this time increment, check ior cros- 

sing of the FEBA.  If FEBA is crossed, terminate 

the engagement, otherwise return to beginning 

(90,342). 
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• 

If combat takes place, proceed to calculate 

attrition for this time step. 

(262,279) Calculate Red.'s attrition of Blue 

(262,268)  Direct fire 

(269,272)  Area fire (target intended plus any nearby) 

(273,279)  Set to zero any Blue force that was an- 

nihilated 

(280,297)  Calculate Blue's attrition of Red 

(280,286)  Direct fire 

(28 7,29 0)  Area fire (target intended plus any nearby) 

(291,297)  Set to zero any Red force that was an- 

nihilated 

(298,309) Check for break points and engagement status 
. I 

reports 

Test for crossing of the FEBA 

Test for Red attrition limit reached 

Test for Blue attrition limit reached 

Test to see if it is time to print an engagement 
! I 

' status report 

(310,320)  Set up flags for the printing of break point 

comments 

a 

i 
(321,354) Print out engagement status report with break- 

point comment if any, and either halt the program 

or return for another time increment, as neces- 

sary 

\ 

\ 
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3.11    Program  Lid tin 

2 
* 

Lines 1-13 were used for program identification in The 

University of Michigan computer system. 

I 

t 
14 IAIULK   (.(HO)frh(Hü) tt "il (4w J fi\.*T(4Ul iiTAT(4ü) t P*U(M « 
15 IMtoLK    P(4u .'TJ I ,'•( • J t4C ) »*Ui\| T 
16 KtML*b   OIU(HO) fKIH «U) — 
17 üIMtNÜCN   äUüt 40)t rCsOf4wl 
18  ulf'cNS I C N   Of t eA(4 OJt* HAD), XJ< <t0), i U4J) fYJ(4J)  
19 ÜlMtNSUN   I.-1T4Ö) ,TTT(4Ö) ""                              "                                                               "./ 
20 LlMLNSlu*   eCF IRt(4U)tKCFIWt(4J ),^tAP(40) fKtXP(4ö) 
21 L»1«CNSIUN   Hl (4öt4C) »riIiH0t4UJ 
22 L i/riNil'J *   AJ(4Üt4C) iAl(40»40)f AZi <t>f40j , A 3 ( 4Ü »4Ü) , A4( 4U.40I 
23 üMfcNSluN   i:j(*»0,^tüi ,ui(40.40)tb2(4Jf40» ,rtj(4ut40) f B4{40,40) 
24 __u I.M L <\SU,.X   M4ü(4Qt^) , AAUHw'f40 ) ,AA <> (tut 40) tAA3(40»4U)  _^ 
25 ~ UMINTU.IM   AA4 (4ü • VÜ)» to3U' 4 J t4Ö ) i BÖ1 (4Ü1401 »ÖÖ2 ( 40 v 4UI 
26 ulVtNaiJ.N   l t) 5(40i^0) f t .iH(4Uf4J ) 
27 JI.*fc.\SiüN   A(40f4G),b(4J,40r 
28 uMtNSiw.^   rtt4rCt«t0) 
29 Lli-u\bL,\   AKKlRMtOI 
30 *t AL   E Hj tu) t 4(^0) I\14JJ tK(v,,ta)  
31 KfcA" Si(5 . b ) 1 I. JJ, JLLTAV »VtKSTrtK, NSTtP", SbKtAKt RtiKEAKt TSTOP* l INE » PÄIÜRA-" 
32 LtL«tüKAi\fi*üM I 
33 > FCKMATC2I 3tFO.lt» 7. 3tF6.li 1 J«^ F 3 • 3 tF 7.«i, > II ,F6. It 13)                                     - 
34 >>P«,T = t?dRfcAK*i'J0. 
35 KPLT = H'iKcAK*lCO. 
36 iwRll t (iitft) lit JJt^tLrATtVtHSTAK t'MSTLPtbPcTtKPC T,TSTüPtU tfc - 
37 It PKiVhtLNG.<AN,HLMT 
38 > rt^AU • l» t*üHUUNC   „üfrcAT   dtTwfccN   »»13, 
39 1      *    elüt   lüfcFcMtKo)~wtAPl,\   TYPtS•,/.'ANJ*,13t 
40 i     '   AfJ   lAlfALMKj)   htAPCN   TYPtS.S/t'THfc   Tirtfc   STti*   IS   M 
41 3     Fo.it*    Si-^MJi.'./.MrL   VLLuCITY   (Ay/ÜRAuU    IS», 
42 J*_   fl'•_*•!.   '''iTfcKb   PtK   SLLLINÜ' t/t -i^UK    iJSFt..lt'    NfcTfcKS',/, 
AT -       "    v      • f> t- ;r.   WILL    u t * , i 3. "*'   iTLPS   rtLUEt«   PK U I UUT S. • t/t                                    '      • •" 
44 ü      • L-^LLI:    »"LÄN   »CiM   I 3 • tr5.11 •    PtRuL- JTS/t •KtO   tiRtAK   *, 
45 7   «KilM    li»' tF3.lt1   PL^CcM« t/t * TML   kitäAtiEMkNl   wlLL   NuT«, 
46 d   *   LAUcJ* tHO.^t *    itCcNJS1 t/t *L1 .L-   M),/, 
47 s'tMidM   • , J j,/,,L;\ÖKA,\=   «»reit*   v.LTükSM/t1KUNlT^   *,I3,/,/t/) 

48 "I    K» ^*_S_A»_IL  __ 
49 i -      "Hi ; J ( i Yl > f M( K is i ,Vl { KK ) , Y ! fisiO tl^UKi 9*it}T|KM ttflOU K) 
50 I'J        KLKf-«1(F4.utt2FV'.li^iItlKfAhfdXtll) 
51 UL   KO   «W« 11J J 
52 iiv A-   »Ji;ti>J    >\(KK)tA««lniii)fVJ(NK)ffIi<l(K.N)ff^r$T(Mk|fi«IU(Kfk)t$T*iTlKK) 
53 :\t«t-<-,3^J     (. rh L.'I J) ,w = i , JJ) 

' 



501 

. 

. 

* 

!>4 
Srj 
bö 
57 
bd 
t>9" 
60 

KJAjHJLtlJJ    (AKHlKi/( Jj ,J=1,JJ) 

61 
62 
63 
64 
6b 
66 

66 
69 
70 
71 
72 
73 
74 
7t> 
76 
77 
76 

tii 
82 
61 
64 
6b 
bb 
6 7 
68 
8* 
90 
91 
9? 
93 
94 
9 b 
9o 

ÜC 26 1 = 1,1 I 
26       K£AUj9fi2j   <S( It Jit J-1.JJ) 

00 28 J=ifJJ 
26        RtAl)(S32)    < T(J,1 >, i. = l,ii ) 

KEAO(b,32)    (üLUKtl 1) ,1=1,11 ) 
KL'AJ(5f32)    (RCFlXc(JI t J=ltJJ) 
ÜC   36   1 = 1,I 1 
DC   46  J=1,JJ 

36        KEAüT5f4JJ    Aj(i ,J|,Ai( 1 , J) , A2U , J ),A3(1,J),A4(1,J) 
1      ,AAC( I , J) ,AAH I r J) V/>A<M I » J), A A3 I 1 , J) , AA4< 1, J) 

0L   37   J=i,JJ 
 L>L   37   1 = 1,11  
3 7 K£AC(5,f;Ji    ü vy ( J , 1 1 , H 1 ( J r 1 ) , Ü2 ( J , i ) , 0 * ( J , I) » 5 4 ( J , I ) 

1      ,6dC( Jf i i iribl ( J , 1) ,6 32 (J, Di t*u3< J, 1) ,*b4(J, 1) 
tU        hLKMAT( r»fh. j) 

DC   33   1=1,11 
33        RfcAÜ(5fVll    (,)1(1,JJ,J^,JJI 

OU  34   J=1,JJ 

34        KEA0<5,41)    (kUJ,l),I = i,lIJ 
41 KjKMAUibl~4. 3,riX) 
32       FCRMT< i2Fc. l78~X )""' 

If   <PRIJK   .CC.   C)   GC   TC   «t9 
DC   46   1=1,11 

4o KtAü(5,4ö)    <P( I,J),J=i,JJ) 
UC   47   J=1,JJ 

47 READ(5,48)    (g(J,l),l = l,U I 
48 "FCKMÄT(36i2,dX) 
49 BTbSJ  =   C. 

" uc '50 r*it u "" 
bü        dTtST=öTEi»T*l»H.T( I )*M 1) 

RTEST*0« 
CC   öv^ J=1,JJ 

6Ü        K It ST = KT t S tVkuT ( J| *M J ) 
L/C   2(. C   1 = 1,11 
tii)=c 

2oO     ütXP(l)=J.<J 
ÜC   21C   J=1,JJ 
HCJ)»C 

ÜKi     RfcXP(J)*ö7ü 
n     « o. 
rsfüP =4 
GC   TU   13J0 

97 
9b 
99 

_ip.ü 
lVl 
102 
103 
lu<* 
10b 
100 
107 
10H 

70        CCJMTINUt 
DC   luO   K. 1 = 1,11 
DC   11 C   K/=1,JJ" 

iüü     K(Kl,K2)   =   (XI(K1)   -   XJU2U**2 
bcu     II =   TI        «•   ÜUTAT 

IP(TI .LE.TSIUPl   Gu   TU   :>Cb 
TI = TI-üELTÄ~T 

ISTOPsb 
GC   7C   1300 

boO     DC   blC  L*ltll 
blü     h(L)   =0 

uC   i»2C  L   =i,JJ 

• 

10 9 
110 
HI 
112 
113 

"bTC      H<C)=G 
DC   525   J=1,JJ 
IH'\(J).U.O./ GÜ   Til   525 
IHSTlTCJJ.fctMJ   GC  TC   b/3 
GFLöA(J)-üFcöA(J)-V*JhLlAT 
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YJ(j)=YJU)*V*0_lTAT 
J25     CC.\TINuE 

IF   (GFtdAUOMlT)   .GT«   tNGRAM   U   TU   t»üO f| 
If(UM.NccU)   GL   TL   ^j( Ü* 
Ut   33 C   i^i . 1 i 
CL   53C   J-l,JJ 

 i F (_H ( I) itii 0_._. UK ,N( Jl • «-U_.jJ._l   GÜ   Tu   ;>l^i   
T7I K( I , J jsSUR UK <11J >• 4 YJ(J J-VT?Hl*< YJf J l-VI C 11 11 
122 IHftt ltJ).cL.eCf JKJEti KCR.KII, J KGfc.SUtJH   Gu   TU   52ü 
1-3 ÄiltJ)*Ag(1«J)*A1(I,J)*K<I, J)*A_(I,J)*K(1,Jl**_* 
U4 1   AiU tJl*K(lf Jt+*3*A4U»JI*K(i , Jl**4 
125 GG   To   5_7 
126 J2O     A(I»J) = ü.  a 
177 577     IT (K f 11 J ). iTi kC FlK'fc (J J. LK. A ( I # j ). UL. T (j , I ) I   GU   Tu   5IöT 
I2t> b(J,I )= ttüj Jil )*ulU. U*_U-tJJ + t '2iJ. I)**< if Jj_**/ + 
129 i biUir!*fi (i t J)"**3>14 CJ t i)'*k 1: i, J<**4" 
130 GC   TU   530 
131 52e    ßTJ7il«o. 
132 GL   TC   ^30 
133 529     A<I,J)=0. 
134 d(Jti)=J. 
133 530  CCrtUNüt 
136 Gü TG 430 
137 2000 DU 25CÖ 1=1,11 
I3d PC 25G0 J=ltJJ  
T3 9 IF(M( U."cw.ö..üK . N ( Jl .liwVO.) uU TU 2300 
140 K(I,J)*OFtBA(J) 
141 IFikllt JI.Lt.bCHKEIl 'I.LK.K'Cl, J).Gb.S(i.J) ) GU lü 2200 
142 All, JI^AOI lt.l)*Ai(ItJ !*«(!, JJ*A2(I,J)*KU,JJ**2+ 
143 1   A3U ijT*M'ItJl*0*AVUf Ji*K(l ,J)**4 
144 GL   TL   225U 

! 

I 
I 
J 
I 
I 
I 

143 2_üÖ   A(I,J)=J. 
146 >25ü   1F(K( I,J).Lt.c<CHKh<J).LK.K(I,J).Gc.TU,IM   Gu   TU   227b 
147 b (j , r Moo t J 11) VH n J , rffwn * jr*&it j, 1J*K n t J > **2* 
14o 1   UJ(Jvl}*R(itJ)**J + _-4UflJ*KÜ ,J)**4 
149 GC   tü   25uO 
150 *j__   _J__J 1 = 0»  
151 GG   lü  I5I5Ö 
152 23G0   A(ltJ)=0.   
15* d(J,l)=0.                                                                                                                              — 
154 25C0   LCMINGt                          _                                       __            

T5S 430     lF   ITfflüH" •TQV~OI   GQ   TÜ   T34 
15t> ÜC   45C   I «111 I  

757 il(I)   =   0 
15d IF   (V (11   .tG.   ü.»   Gü   TO  450  
159 DC   44C  J«ifJj 
160 IF   (PUtJ)   .cg.   0)   Gü   IC   4<«0 
161 IF   U(1.P( I.JT)   .Lt.   0.1   Gü tü   *4U 
162 L(I)   =   PUtJt _ 
1ü3 GC   TJ   H?1 
lo4 44C        CClWiNL- 
165 43U        CL\TINÜt 
Ibo GL   TC   551) 
lo7 ^^4     ÜL   toC   l = i i I I 
lort TtMl^C. 
16* TkM2=C. 
170 !1»C 
1/1 12=0 
172 ÜC   541   J=1#JJ 
173 If (Al IiJKtC.O.)   Gü   TG   540 

y 

o 
L 
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:: 
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• ! 

.       /' 

.     J 

174 
175 
176 
177 
178 
179 
180 
181" 
182 
183 
184 
185 
186 
18 7 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
20 7 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
22<> 
225 
226 
227 
228 
229 
230 
231 
232 
233 

535 

540 

_545 
550 

555 

589 

590 

593 
594 

595 

60C 

61C 

65G 

660 

TEH«A(I,J L*B(Jt_I) ___     _     __ 
IF(TC*ME.TEMll   GO   TG   540 
TEK1-TEM 
11-J 
GO TO  540 
IFiAC I,JI.LE.TEM2)   GU   TC   540 
T£*2«AU,J) 
I2*J 
CONTINUE 
IFUl.EQ.O) 
EfII«U 
GC   TO  550 
EIII-12 

GO   TC   545 

0.)   GG  TC   594 

.ANO.   R(IfJ) 
0)   GO  TC   593 
.LE.   C.)   GC   TO 

•GT.   RSTAR)   GO   TO  593 

593 

CONTINUE 
OC   59C   I-ltll 
IF<E(II)   590f590,5ti9 
RATE»AAO< IfEU) MAAll IfE(I))*R< I, H I) ) +AA2 I I» E ( I) ) ** ( I, E { I ) ) 

1   **2-»AA3(I,E( I) )•«< Iffc( n)**3*AA4<I,E(I ))*R( I,E( I))**4 
_EEXP( n«BEXPU)*RATE*f (II^DELTAT 

CCNTIMJE      ~  " 
If   (PFIÜR   .EC.   0*   GG   TC   595 
CO   594  J*1»JJ 
H(J)   *  0 
IF   <N(J!    «EO. 
OC   592   1*1 fU 
IF   (Eil)   .EC  0 
IF   (Q(J,I)   .EG. 
IF   CdiJtQfJ«li) 
H(J)   * Q(Jfl) 
GC   TO  594 
CONTINUE 
CCNTTNUE 
GG   TC   701 
CO   70C  J=1»JJ 
11*0 
12*0 
13*0 
ownto. 
RTEP2«0. 
RTEM3*0. 
DC  675   I=itII 
IF(BCJ» D.EC.O.)   GG 
IF(A( I,JI.EU.Q.)   GC 
tEM*ECJVn*AiT,"ji 
IF(E( D.NE.J)   GC   TG 
lF<TCf.LE.RTE*l)   GO 
RTEfU*TE* 
11*1 
GC   TO  675 
IFIECn.GT.Ö)   GO" TO 
IF(RU,J).G?.RSTAR) 
IF(TEF.LE.RTEH2)   GG 
RTfcM2*TEH 
12= I 
GC   TO  675 
iFmn.Gr.cr'sc to 
IF(RUf J).GT.«STAR) 
IF(e(J9I).LE.RT£M3) 
RTEH3-8(J,I) 
13*1 

TC 
TC 

675 
6 50 

6CC 
TC   bib 

610 
GC   TO  675 
TC  675 

66C""'" 
GC TG 
GC   TC 

675 
675 

u 
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234 675 
235 
236 
237 
238 680 
239 
240 
241 690 
242 7CC 
243 701 
244 
245 702 
246 
247 
248 
249 705 
250 
251 
252 725 
253 
254 730 
255 750 
256 
257 60C 
258 
259 
260 850 

_ 
1000 

)*R(H(J>,J) 
J)**4 

1030 

104C 
1050 

1070 
UCO 

1130 

1140 
1150 

CONTINUE        _ 
IFÜ1.EQ.0)   GO   TC   680 
HU)«I1 
GO  TO   700 
iFU_.EU.C)   CÜ   TC   090 
HU)*I2 

_GG  TC   70Ü  
H(J)-Ii 
CONTINUE 
CC  705  J=1,JJ 
IF(H(J#I    7C5,7C5,7?2 
HAT_^BbO(J,H(J))+böUJ,H(J))*R(H(J),J)fBB2(J,H(J) 

1   **243B3i J• M J)> *RCM J| LJ \»»3+BB4U>Hi J>)*KIH( J), 
R"/U£«RAf_*Aa*TRM J) 
KEXPtJ>»REXRU)*RATE*NCJ>*DELTAT 
CONTINUE 
I SUM   «0 
LC  725   1=1,H 
±SUW«JSUM*Em       _      _. 
IFUSCM)   730,730,1000 
CC   75C  J*1,JJ 
I SUM   *   ISUM+MJ) 
IFUSIM)   800,800,1000 
Ü0  850  J*1,JJ 
KK = J  
iTIOF^EAJjr.LE.O.O)  GOTO  1230 
CONTINUE 
GC   TO  500 
00 1100   1*1,II 

DC   1050   J»l,JJ __  
~T>  UNU).fcQ.0>  GO TO  1030 

IF   (H(J),Nt.I)   GC  TO   1050 
MI)**m-ü<J#n*MJ)*DELTAT«Rl<J,l)*ARMTRMU) 
GO  TO   1050 
IF(MJ).EQ,I)   GC   TC   104C 
IfUJ <H(J)).N..Xnn>CR.YI(H(J)).N£,Yim )_GO_IO   IQ.50 

W< 1 )^M( I l-BIJ,I}*NIJ)*^il )*CELTAT*KI{J, iI*A*MTRM(J ) 
CONTINUE 
IFIMD.GT.C.)   GC   TC   1 ICO 
MI)»0. 
IFCPRIOR.fcC.O)   Gü   TU  1100 
CC JO70   J*lfJJ_ _       _ 
CG   1C70   Until 
IF(C«w,LU.EC.I)   GUtLO'O 
CCNTINUE 
OC   12C0   J=1,JJ 

OC   1150   1-1,11 
IFUMUI.Eu.O)   GO  TO   1130 
IF   <EU).Nfc.J)   GC  TC   1150 
N<J>*MJ)-AU,J)**MnHELTAT*BIU,,M 
GO   TO   1150 
1 F C _ I n.EQ.J)   GC   TC   114C 
IF(XJ<E(I)).NE,XJ(J).CR.Yjmm«NE«YJUn   &U   TO   1150 
N(J) = N(Ji-A(i.J)**'MU*NN*OELTAT*Br(I,J) 
CONTINUE 
IF(M J).GT.C.IGC   TO   12C0 ' 
NU)»G. 
IMPRIGR.EC.OI   GG   TO   1200 
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294 0C  1170   I-l.lI 
29 5 OG  1170  Ll=i,JJ 
296 1170     IF   (PUtLL)   .EC.   J)   PU,LL)»0 
297 1200    CONTINUE 
298 TEST-C- 
299 OO  1210   J*1,JJ 
300 KK*J 
301 IFC0FE8A(JJ.LE.0.I   60   TC   1230 
302 1210     TEST»TEST«-MJ)*RBT(J) 
303 IF<i.-TEST/RTESI.CE,RBREAK)   GU   TO  1240 
304 TEST«C. 
305 CG 1220  1*1,n 
306 1220     TEST«T£ST*M< I HÖBT ( 11 
307" IFU.-TEST/BTEST.CE.BEREAK)   GU   TO   1250 
308 NTEST*NTEST*1 
309 IF.(NTEST.Nfc.NSTEP)   GO   TC   SCO 
310 ISTOP*0 
311 GG  TO  1300 
312 1230     IST0P»1 
313 CC   1235 MMM*KK,JJ 
314 IF(DFEBA(K*M).GT.O.O)   GC  TO  123S 
315 CFEBA|MMM)«C.O 
316 1235 CONTINUE 
317 GO  TC   1300 
318 124C     ISTCP«2 
319 GC  tO  1300 " 
320 1250     IST0P»3 
321 1300  WRIIE<6,1310)   TI 
322 1310    FCRMAT(«1SURVIVING  FORCES AT TIME  =   •.F^.O,1   SECONDS:« 
323 •   //fiX,«     BLUE   TYPE«,4X,«NUMBER«,4X,«ROUNDS  EXPENDED«,3X, 
324 1   «TARGET«,/) 
325 WRT?EC6t 13301   n #BIfl< 11 «IK 11 tMÜRTI > tEU FTl*i7l 11 
326 WRITE<6,1320) 
327 1320 FCftMATf'C«,«     RED   TYPE«,5X,«NUMBER«,4X,«ROUNDS   EXPENDED«, 
328 •   3X,«TARGET«,3X,«DISTANCE  FROM   FEBA«,/) 
329 WRITE (6,13 311   <J,RIC<J),NU),REXP(J),H(J),DFEBAU),J«i,JJ) 
330 1330  FCRMAT(«   •,I2,1X,A8,3X,F6.2,7X,F8.2,10X,I?) 
331 1331   FORMAT««   • , I2,1X,A8,3X,F6.2, 7~X,F~8.2,iOX, I2«9X9F8.2> 
332 NTEST«0 
333 IFUSTOP.EC.O)   GC   TG   5C0 
334 IFdSTOP.NE.il   GO  TO   1340 
335 hRITE<6,1335) 
336 1500    CONTINUE 
337 faRITE(6,1550) 
338 1550    FCRMAT(«1«) 
339 1335 FCRMAT<«0***BR£AK   PCINT:   RED FORCES   HAVE  REACHED FEBA«,/) 
340 STOP 
341 1340     IFIIST0P.NE.2)   GC   TC   1350 
342 fciRITE<6,1345) 
343 1345     FCRMAT(«Ö***BREÄK  POINT:   REO ATTRITION  LIMIT  REACHED«/«1•) 
344 STOP 
345 1350   IFU5TOP.NE.3)   GO   TC   136C 
346 WRITE(6,1355) 
347 1355     FCRMAT(«0*»*BREAK  POINT:   BLUE   ATTRITION  LIMIT   REACHED«/«1•) 
34« STOP 
349 136C   IFUS10P.NE.5I   GL   TC   70 
350 WRITE<6,1375) 
351 1375  FCRMATI«0***BREAK  PÜIN.T:   ENGAGEMENT   TIME  LIMIT  EXCEEDED«) 
352 taRITE(6,1550) 
353 STOP 
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3.12     Program Enrichment 

1.0)  Eliminate the 4 -order polynomials to predict 

attrition rates as a function of range and thoss used 

to predict firing rates as a function of range.  In 

using the program to study engagements over a variety 

of ranges, one must be very careful not to exceed the 

limiting ranges used in the fitting of the ** -order 

polynomials for the attrition and firing rates. An 

alternative to the above approach might be the use of 

linearj, or higher order, interpolation in tables of 

attrition rates and firing rate versus range; includ- 

ing error returns whenever the appropriate ranges 

are exceeded. 

2.0) Print out the current value of the attrition coeffi- 

cient in the interim engagement data currently being 

printed. 

3.C)  Introduce variable velocities for the different Red 

weapons groups. 

**.0)  Allow both the X and Y coordinates of the Red attackers 

to change during an engagement. 

5.0)  Include, perhaps-statistically, the effects of the 

intervening terrain. 

u 
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3,13    Sample Application 

The numerical solution procedure was applied to a 

hypothetical tactical situation. The application employed 

hypothetical numbers for the weapon systems and is only 

intended to indicate the kinds of results that can be ob- 

tained with the solution procedure. 

Figure 2 portrays a Blue defensive tactical situation. 

Figures 3-13 are computer printouts for the application. 

Figure 3 indicates the total number of weapon groups on 

each side and values for a number of the model parameters. 

Figure ** gives the number of survivors, by group, at time 

zero, and thus indicates the initial numbers of forces in 

the engagement.  Figures 5-12 provide res?'.Its at intermediate 

points in the battle.  Figure 13 presents the results at the 

end of the battle, which in this case was due to the Red 

forces having reached the FEBA. 
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GPCLN 
ANC'i 
TK T 
U£ V 
RSTAR 
TK*E 
BLlE 

?H H 
LINE* 

i 

M 
c CC^J-T ecr et\    ü nu f'-FKN^iPS^js^cN GROUPS 
2~Ri-'tf f\i Y/*r<Vfc *)" •-. «vuf'GROUPS 7  
in ST??  ;<      ir.c ££CCKCf. 
H.CCITY lit*.«:';;)   I 

IS   7CC.C  M!t»S 
WILL   &E     6   SUPS 

P*EAK   PC INT   IS   ?C.C   PFFCCNT 
frciÄ'^cixi "is vs.cWCCIäY• 
NHAGCKtNT UILL NCT IXCCGI   2500.CC StCCNCS 

C " " = 

k*ZQG  *kfl*$ Ft'F' SLCCNC 

£T'WEVN'">0 IMCCTS.      

totttotm*ta& 

•.-. 

1 
! 

I 
I 
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I 
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Figure  3 
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n 
,?fc£i!.W*UTjyj. AL ii£ 

BLUE GROUP        NUMBER 

.6 

I 

n 

•D 

0 
! 

D 

i 
2 

c 

6 
? 
8 
9 

IC 
11 

1 
2 

c 

t 
1 

"HÜ 

IC 
11 
12 
13 

IC:TANK 
IBiAPC    " 
iR:WR  4Q 
re*:»frrc6 
2Ü: TANK 
2t>:APC 
2»?:3P  9C 
3ö:APC ' 

YCKI "61 
/FZAC  37 

RED GROUP 

42TANK 
'•:'APC~"  

fc:APC 
i/S:APC 
1/*:ATGK 
2/5:APC 
3/a:rAW 
2/5:APC 
3/5:ATGM 
ATW 
ATGN 
KGRT   12C 

3.CC 

J.CC 
• 2'-;c"c " 

2.CC 
V.CC" 
2.CC 
4. CG 
2.CC 

•~r;cr 
3.CC 

NU*PER 

?.cc 
Tvec" 
3.CC 
9.CC 
3.CC 
2.CC" 
3.CC 

T.~c*<r 
3.CC 
2.CC" 
3.CC 
Y;CC 
3.CC 

• £j...l?C$i.ti 

RCLK1   Otthtit 

C.C 
c ."c 
c.c 
c"."c 
c.c 
c.c 
c.c 
c.c" 
c.c 
CTC" 
C.C 

T^PGEF 

C 
c 
c_ 
c 
c 
c 
c 
c 
c 

'C 
c 

PfUCS EXFENCEC   r/«GFT   DISTANCE F»C" PP8A 

C.C 
~cr.r 
c.c 
c.c 
c.c 
c.c 
C.jC 
C'.C 
c.c 
c.c 
c.c 
c.c 
c.c 

c 
T 
c 
c 
c 
c 
c 
C 
c 
"c 
c 
c 
c 

ICCC.CC 
ICCC.CC 
ICCO.CC 
ICCC.CÖ 
IC5C.CC 
10 5C.CC 
lifiC.CC 
Tcco.'cc" 
ICCC.CC 
iccc.co' 
ICOO.CO 
icj'c.cc 
20C0.CC 

PnHhfVW 

n 
. J 

Figure 4 
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SUV IV IK   rC^fFS   M   Tl''C   * '.c. secr.Ncs 

SLUE  GROUP NUrl* »CLKCS   EXF6KCK   '   UPCC-T 

« 

t ie:^NK 2.'-. f 
:• ie:APC ?.*; 
3   10:RP   00 2.CC 
A   IQtfKTCe" ' C7£i 
5   2P:T/.\K l „*e 
6   2P:APC 2.fc2 
i   2H:RP   4>C /•CC 
6   3P2AFC A , c c 
<;   Ji» :PR   SO 2.CC 

iC   f'Cßl     bl a.re 
li   AFAAC    J7 3.CC 

RED GROUP MVpf 

1   A: TANK 2.f* 
2  A: A PC £.7 7 
2   £:TANK /.*'< 
A e:Apc C63 
5    1/»»SAPC l.CC 
6   1/5JAIC« CC 
?   2/5:A»>C ?,CC 
8   i/*:TA.\K" r.cc 
<3   VSiAPC irCC 

IC   3/5:MGP CC 
1 I   ATOP CC 
12   ATGN CC 
13   f'GRT   UC 3.CC 

t\.fA 

C..C 
TT4V 

»CA.Sfc 
CC 
c.c 
CC 
4~.CC~ 
CC 

£ 

_c 
2 

V 
C 
c 
c 

c 

RCitvCS E-XPENCEC     TAUGH     DISTANCE FKCP FFBA 

5. SI 
56 '.TC 

5.6*. 
255.28 

2 A * 2 5 
C.77 

"Tuet 
26.12 
C.78 
u?e 
c?a 
5,<?A 

88C 

eec 
eec 

icec 
TC5C" 
inn 
lo'cc 
icco 
"iccc 
iccc 

.CC 

.CC 

.CC 

.CC 

.CC 

.CC 

.CC 
VOC" 
.CC 
.CC 
.CO 

C 
IC 

1G8CCC 
20CCCC 

4 or 
*e* 

%s 
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Figure   5 
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SISVIVUC FC'SCES  jT TIES   » \JS.i...cS,CCNCS 

BLUE GROUP       *UVCE* RCl+.f S  r>>'t\CEC JAHCCI 

i   lä:TANK               2.2C S.7S                          i 
[                ? letdpc            3.ac " 546.7'»                           2 
|                   !3  18:PR sc          i.ec C.67                           2 
I                        <i   IB :Pft 106            (T.C I.eg                        C 
[                        5   2ß:TANK               1.77 i.n                 3 
[                       6   2E:APC '   3.6 7" 6/4.14                             A 

7   22:RR  <3C            1.7$ C.67                             A 
€   3P.:APC "             V.CC """ C.C                     C 
c   3ß:^P   SC            2.CC C.C                             C 

"IC KP!    er         3.CC 17.c<j                         13 
11   *FAAC   37             2.CC C.C                             C 

RED GROUP           NUNEC» »CUES   EXPENQEC       T^GCT        CISfANCc   i-RCV   K8A 

I   'i:TANK                2.26 11.12                           I                           76C.CO 
  2  VfAPC""                P.2"5 " 14T743                             3                             76C.CÖ 

3   6:TANK                  2.26 1C57                           5                           760.CO 
4   c:£PC~                  6.46 647.6$                           7                            76C.CO 
5   1/55APC               3.CC Uf:.A2                           2                         lC'.O.CC 

4          6   l/?lÄTG*           C.C" C.77                           C                         ICSO.CC 
7  2/5:APC              3.CC 6/S.S*                           6                         1140.CG 

"•""T ?/5:"TÄ>rk"    '"" 3VCC 23.76                           l                         1CCÖ.C0 
S   3/55APC              3.CC 116.2$                           2                         ICCC.CO 

IC  3/5:ATGI"            'C.C" C.7€                           C                         iOOO.CC 
il   AfGN                      C.C 1.76                           C                         ICCC.CC 
12   ATG*                      C   C C.3S                        .  C                         ICeC.CC 
13  PC3T   120            3.CC ii.se                 ic                 2CC0.C0 

t •                                    ^* 

\ 

% 

*/ V, 

Figure _6 
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sj^XLYA*!?. rrP.c<:J. ?J. T.l.v!: •   isc. ?EccNCSt. 

BLUE GROUP hl*H« PCINCS   LXP»lM:tC        T/»PCET L 
I 1P:TAK< 
2 ie:APC 
3 1D:SR   90 
A TB":PRiC*6 

20: TANK 
6 28:APC 
7 2ß:RR  SC 
e 3e:APC 
s 30:PR  SC 

iC RWrTi' 
u /PAAC   37 

RED GROUP 

i 
3 
'i 
K > 
6 
7 
fi 
<5 

LC 
11 
I? 
13 

A:TANK 
4TITC 
f:TANK 
6:APC 
1/5:APC 
1/5:ATGN 
2/5:APC 
3/*i JTÄNK" 
3/5:APC 
3/5SMGK 
ATGV 

fCPT   i<?0 

i.es 
WS' 
1.16 

T7C• 
1.66 

"3.61 
1.15 
A.CC 
2.CC 

*?;cc ~ 
3.CC 

NUGER 

1.52 

l.si 
7.S2 
3 .CC 
C.C  ' 
3.CC 

~r:cc 
3.CC 
CC 
C.C 
C.C   " 
3.CC 

14 A3 
*6C .53 

2 .3C 
1 .?S 

11 .76 
U€ .6.6 

2 .2? 
* "It 7 »41 

C .c 
11 .ss 

6 .A6 

CUKCS iXFENCEC 

15.A2 
255 ,11 3 

1A .76 c 
762 .AC 7 
A?C ,CA 2 

C • 77 C 
SAA .S3 6 

25 .6A 1 
A16 ,64 2 

C .76' C 
I .76 C 
C .38" C 

17 .?2 iC 

13 
c 

TARCLT       DISTANCE   FRO  PE8A 

6A0.0C 
" "(TÄCVC'C 

6AC.C0 
'6AC.C0 
1C5C.C0 
"lCSCVCC 
ueo_.cc 
Toco.cc 
ICCC.CO 
KCOVCC 
10CC.CC 

"lo'ec'.cc 
2CCC.CC 

*, 

^ 
^ 

% I 
V, - 

Figure   7 
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SCf«_y£V INC m fCVC = 5   4T   t! ^ f ?A?.*_.liL2?LLli.s. 

BLUE GROUP 

P 

fl 

I   ie:TANK 
2 le.-APC**"" 
3_1B:«R 90 

~4 rerp»Tc6' 
5 2B:T/NK 
6 26:AFC 
7 2B:PP <iO 
B "3B:AF'C "' 
$   3ft IM  <»C 

ttrmmr ~w 
11   AFAAC  3/ 

D I 
''2' 

4 
c 

6 

""If 

IC 
11 
12 
12 

RED GROUP 

4tmx 
ITA PC 
etTAKK 
6:APC 
l/5:APC 
1/5:ATC,K 
2/5:APC 
l/SfTANK* 
3/5:APC 
3/5:AT6* 
ATC.V 
Arcy 
J'CRT   120 

. J 

Nf-^CP 

1.52 
"3.56" 
C.5C 

"C.C   " 
1.56 
2.26" 
C.45 
4.CC" 
2.CC 

3-CC 

M.V8ER 

1.53 
"F.TT 
1.54 
r.3T 
3.CC 
C.C" 
3.00 
yrrcr 
3.CC 
C.C ~ 
C.C 
C.C" 
3.CC 

»CttCS  ?XFFi\CEC       T/«06T 

16.55 
Tifi.K 

5.26 
U*»8 

15.65 
1225.63 

3.2« 
66C;2l 

C.C 
T5TS6" 
24.*C 

C 
2 

4 
2 
C 

TT 
2 
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ie.26 

744.66 
C.77~ 

125S.SC 
4 17$? 

716.S<5 
"  *C.*76 

1.76 
 CVäfi" 

23.75 

3 
c 

"f 
2 
C~ 
6 
r 
2 
C 
C 
c 

IC 

520 
"'"5 20" 

520 
'"'5 20 
1C5C 
1C50 
11 eo 
i ore 
icon 
"icrc 
ICCC 

'l'CFC 
2CCC 

.CO 
~. CO" 
.CO 
red" 
.CC 
.00" 
.CC 
.CO 
.CO 
.CC 
.CO 
.CC 
.CO 

4>   

V 
V 

Figure 
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siPViviNG recces M TINE = zee. SECCNCS: 

BLUE GROUP M*et» RCINCS   EXPENCfcC        URGE!                                                           i 

1   ie:TANK l.is 22.ee                   i                                           | 
2   lfi:APC 3. A A 121C.CÄ                           2"                                                            j 
3   ID:?R  90 c.c 3.55                           C 

"    A   lTimrC'6 cc l.ti                        c~                                                     „ 
5   2B:T/>NK i.Ae 19.57                           3                                                                1 

"6 '2G:APC 3.A2 1423.71                        A                                                        4 

7   2E:PR   90 C.C 3. A A                         C 
"  8"3E:APC A.lC "~"1139.6«                           2          "            1 

9  3C:PR  90 2.CC C.C                             C                                                               J 
• nrmn TI 3.a AA.96                           2 

11   *FA/*C   37 3 .CC AC.9C                           2                                                               1 

RED GROUP Ntyp.tR PCUKCS  EEPENOEC    Jf„4?jG|J_ _.CISUNCELfj*?üLP..IS* 

1 A:TANK 
2 Ä:ÄPT~ 

1.19 21.63                            1                           ACC.CC 
~5".Ae Ace.ee                  2                  Aco.ec               • 

3 6:T*KK Uli 21.CC                          5                         ACC.CC 
A 6:APC* 6.7*1 9A5.5A                        "Ü                        "AlfC.CO 
5  l/5:*PC 3.CC 1C59.28                           2                         iC50.CC 
6   1/5:ATGP C.C C.77                           C                         105C.CO 
7   2/5:APC 3.CC I574.ee                           6                         ilfiC.CC 

"€ WSiYMHT "l.CTT "TS.äT                   i                  iccc.cö 
9  3/5:APC 1.CC 1C17.35                           2                         lCCC.CC 

IC  3/fiBtdNT C.C c.re"              c               ICCC.CC 
11   *TGP C.C 1.76                           C                         lOCO.CC 
12  MGK — C.C CIS*                 '"t               "Tcec'.'cc             "( 

13   NC9T   120 3.CO 29.69                         IC                         2CCC.CC 
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BLUE GROUP       M>!'F? SCUKS  C->PC»NCHC I**€II 
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Figure 10 
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1 
SUVIVING  reacts  <n  TT.vf  =    /«2C.  SFCCNCS: 
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BLUE GROUP 
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In the general structure assumed to describe hetero- 

geneous-force combat situations, the attrition coefficient 

was partitioned into three factors:  the attrition rate, 

the allocation factor, and the intelligence factor.  Pre- 

diction models for the attrition rate were developed in 

Part B of this report.  Chapter 2 of Part D discussed the 

allocation factor in the context of optimal allocation 

strategies.  This part of the report describes research to 

predict the form and parameters of the intelligence factor 

and also describes results of a small effort to model ad- 

vance surveillance patrols associated with reconnaissance 

in force missions. 

toctAii page Milk 
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Chapter 1 

THE INTELLIGENCE COEFFICIENT 

George Miller and Robert Farrell 

This chapter describes the results of research to develop 

a predictive model of the intelligence factor, I..(r), fox» 

the general heterogeneous-force combat model.  Subscript 

notation for different groups and the dependency on range 

and time have been omitted for expository purposes. 

Consider a renewal process consisting of occurrences 

of the event "a friendly unit stops firing and commences 

searching for another unit upon whom to fire." The process 

is depicted in Figure 1, 

PL 
TL 

PD TD 

PN 
Tv 

time 
commence 
searching 

commence 
searching 

. 

Figure 1.  Renewal Search Process 

where 

T. s the time between commencement of searches when a 
live target is acquired, 

p, = probability of acquiring a live target, 

Pracsding page blank 
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t;.e . i...t. „et^eer. commencement of searches wheii a 
Uv;dv.i '.u.'Y.tt .. ^. acquired < 

= prv ..v.'l . i: .• --: acquiring a dead target, 

- the c!'..e L»etwee-. commencement of searches when an 
an area devoid of targets IF acquired and mistaken 
for a tar,',ot, 

= probability of acquiring an area devoid of tar- 
gets and mistaking it for a target. 

1'he t I:.-.» s T , 7r., hr.C   L\, are  random variables whose i.'.stri- V 

'. ut «Una nave means ana Ty, respectively VMS 

. irnuicttio;. a ;sumes that the actual search time is distributed 

•:.- «ghout the firing time. 

The expected time to accomplish one search and firing 

sequence *^ 

'*J^  + pDTD + PVTV  ' 

.'.• .. b.ac'-.well's theorem (?arzen, 1962, p. 183) the mean 

: im:.e: ot searc: initiations in the interval [t, t + AL] 

• •-.. :.. to 

P-ID + PVIV 

I 
I 
I 

: ;•    ic:.cz   ir.flriitv.     ~'r.^s  the  mean  number  of   vili. 

.if.'. deiea"    ;   . ivc   target 
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PT At 
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PL
T

L 
+ PE

7
D 

+ PV
T

V 

where it is assumed that when a live target has been acquired 

the next search does not commence until the target has been 

killed.  The attrition rate including  degradation  due   to 

imperfect surveillance  is 

Pt. 

P:A + PD"D + ?VTV 

Recalling that the allocation factor is unity for 

homogeneous-force battles, the attrition coefficient with 

imperfect intelligence was defined as the product of an 

attrition rate with perfect intelligence (a) and an 

intelligence coefficient CD.  The attrition rate with 

perfect intelligence was shown in [B, 1.2] to be 1/T. . 

Therefore, 

al4l = 
TL    V-L + PvTV + P0TD 

Accordingly, the intelligence coefficient is given by 

PTT- 
T - — 

PL
T

I. 
+ PV

T
V 

+ PC
T
D 
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The formulation for I developed above assumes that, if 

a live target is acquired, it will be killed by the unit 

acquiring it before that unit stops firing.  It seems rea- 

sonable to assume that there will be occasions when a unit 

will stop firing on a target before it is destroyed.  This 

condition can be included in the formulation for I by 

letting 

T. K = mean rime between the commencement of searches 
*   when a live target is acquired and destroyed by 

the acquiring unit, 

p. K = probability of acquiring a live target and 
Uf firing until it is destroyed, 

T. Q = mr.an time between the commencement of searches 
•"  when a live target is acquired but not killed 

by the acquiring unit, 

p  . = probability of acquiring a live target and 
'"  terminating attention to that target before 

it is destroyed, 

= Pr " ? L,K ' 

Then considering the fundamental attrition rate (with per- 

fect intelligence) as 1/T, K , the renewal process arguments 

yield 

  pL,KTh,K  

i-L.A.K * P|.,QrL,v * 'A '  fV
TV 

r 
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.. 

The time TT n could be expanded to distinguish between (a) 

stopping fire because the unit being fired upon was destroyed 

by another friendly unit, and (b) stopping fire cue  to 

mistakenly thinking the target had been destroyed. 

. . 

1. 1     References 

Parzen, E., Stochastic Processes, San Francisco:  Holden- 
Day, Inc., 1962. 

• 
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r^ apter 2 

PRELIMINARY MOESLIXG OF SURVEILLANCE PATROLS 

^^n 

Seth Bonder and Michael Moore 

A small part of the intelligence research effort was 

devoted to the development of preliminary formulations o^   the 

reconnaissance in force mission.  The purpose of this type 

of mission is to move and seize a distant objective.  In 

doing so the force will use advance surveillance patrols to 

detect and avoid engaging the enemy while moving to the 

objective.  The structures presented in previous parts of this 

report can be used to describe the assault phase on the 

objective.  Efforts in the intelligence research focused on 

developing preliminary formulations of the surveil.lance or 

intelligence activity associated with the reconnaissance in 

force mission. 

The development of structures to describe the surveil- 

lance activity require descriptions of (a) the behavior o" 

the target in the environment, (b) the detection capabili.y 

of the sensors used by the survieliance patrol, and (c) 

the interaction of these processes.  This chapter describes 

simplified structures of these activities in which the 

target is deemed visible to the sensors for only single 

periods of time.  Chapter 3 considers just the visibility 

process alone and develop." .nore realistic descriptions oi 

tn< i .:»-. ..;.r:..,.r a,- presented to the detection system. 

i 
i 
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2,1    General Situation 

The surveillance situation examined is shown in Figure 1, 

where 

Figure 1.  Surveillance Patrol 

V = speed of main force, 

v speed of the surveillance patrol which advances to 
search the area A, 

A = total area searched, 

a. 
l 

d. 
l 

• th 
= area of the i l   subarea searched (terrain dependent), 

n = 

distance between subareas (i - 1) and i (terrain 
dependent).  Assume that d. = d for all i, 

number of subareas searched. 
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( 

I 
I 

Search in successive areas A is considered continuous search 

associated with the mobile force situation.  Search in 

just one area A might be considered a periodic area surveii-       j 

lance to obtain general iniormation during a static situation. 

For initial modeling purposes we assume that the reconnais- 

sance patrol moves into a subarea and, as a unit, scans 

the area as a single sensor.  We assume that the probability 

of detecting a target in the subarea is dependent on the j 

presence of a target, its visibility, and the detection ca- 

pabilities of the sensor.  The patrol will leave the sub- 

area at the time it detects the target's presence or • 

after a specified time during which it has not detected 

a target.  We initially consider the case in which there 

is only one target in A and assume 

(1) PrCtarget in A] = 1.0, and 

(2) PrCtarget in B < A] = B/A. 

The target randomly moves from one locale to another in 

area A. 
»» 

2.2     Binary   VisibiLiiy 

We consider first the situation in which the target and 

observer remain stationary while the latter scans the sub- 

area for the former.  In this case the two are either in- 

tervisible during the whole period the observer is scanning 

the :   subarea or no, inter-visible at any time during the 

period.  We define 
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T = time spent in the subarea if a target is not 
s  detected, 

T. = time required to detect a target when it is con- 
tinuously visible to the sensor (0 £ T, < «>) , 

p  = probability that the target and observer are 
intervisible (intervisibility exists for total 
period), 

g(i)dx = Pr[t £ T. <_ T + dijtarget present ana visible]. 

The density function g(T) is a measure of sensor capabilities 

and would vary for different sensors.  It has been obtained 

experimentally for visual sensing (Stollmack, 1968) and is 

also dependent on characteristics of the target and the 

environment.  The probability p can also be obtained ex- 

perimentally (see Nortronics, 1965) and is terrain dependent. 

The probability of detecting a target in the subarea is 

p. = PrCtarget in nubarea ] -PrCtarget visible ior 

TC|target present] • PrLdetect in x,|target 

present and visible for i ] 

"G^v/ "•<*>* 

IT  P„ G(T ) CD 

Both the detection and visibility processes are, of  course, 
range and search direction dependent; however, these 
dimensions are not be considered in this initial model. 
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1 

Designating 

T. = time until the target IG detected (0 * T. <   T_). I 
then 

i 
Pr[td <_ T] = PrCi. <_ T [detection] 

= Pr[T , < T • deteotion]/Pr[detection] u — 

Pr[xd < v xargei visible • t. i T ] 

Pr[detection] 

(2) 

i 
; 

I 

Since T < t , the event t , < T always occurs if the event — s d — s 

T, < T occurs. Therefore, (2) can be written 
d 

T 

L(T) = Prix, < T] 
d — 

Pr[i , <^ T • target visible] 

PrLtarget visible • T , < x ] 
\1     m'm w 

•••• 

GU) 
GTT7 

(3) 

and 

2,.„ 
k • he probability ci ^^get presence will be omitted from Ln« 
following develcpm^n*:: reccr.r. izing that it can be added in 
a strain.it to .vai . mann'.jr. 
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I 

ä(T) = PPCT < id _< T + di] 

g(T) 
GTTT 

Letting 

• th 
T. = time spent in iLJ1 area, 

(4) 

• then 

Pr[Ti < T] = Yd) 

and 

y(x) = 

Pr[t" _< i]'Pr[detect target] if T < T, 

LC< r)   • Pi 

I 

6(i r)*v 

1 

l(i >Pi 

if i > T 

if i < T( 

if T > Tr 

if T <•    T 
C 

if T > T 
c 

if T < T 

(5) 

(6) 

(7) 

where q±  = 1 - p   braphically Y(x) is shown in Figure 2. 



Y ( T ) 

1.0 
i 

Figure 2.     Distribution Functioiof T. 

Consider the sequence of activities in which the re- 

connaissance patrol scans the first area, in which it may 

or may not detect the target, moves to the second area at 

speed v, scans the second erea, moves to the third subarea , 

etc.  We are interested in the random variable 

1    -   time until the first detection. 

For a fixed number of trials, m, un*;ii the first detecti : 

T, = (m - 1)T + m(d/v) + i. 
x S C 

• c2m + T^ , (8) 

where 

= -T 19) 

1/V +  T   . (      -) 

. ;. ^ . • •  r :- . .«• ) and •••:  ' :..rv 

I 
I 
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l 
then 

f1(t|m) dt = PrCt < T} < t + dt|m], 

f1(t|m)   = i(t  - c1 - c2m) 

g (t - c, - c 0m) 

G(TS) 

(11) 

(12) 

for Cm - 1) T  < t < mt s —  —  s 

Consider first the possibility of searching more than n 

subareas.  Then 

UQ 

m-1 
(t • m) 

where 

m = i 

f-, (t Im) s(m), 

(m) the probability of detecting the 
target on the m n trial, 

(i - p)  p, 

and p. = p for all l.  Therefore, the probability of detect 

ing the target before leaving the area is 

nt 

PrCT-L < nTg] - /  fn(t) It. . 
/ 

(13) 
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The time Lo detect the target, given it is detected 

while the search is in process, is easily obtained if we 

note that 

Pr[detect on trial m|detect on or before trial n] = 
3(111) 

SIFT ' 

" 

where 

S(n) = ^A  s(m) . 
m= 

. 

Therefore, 

f.(t|n) = Pr[time to detect]detection made 
within n trials] 

- • 

E   /+im r \  s(m) 
fi(t|m.n) ^^ (1U) 

Consider next the random variable" 

The above model for p^ considered only one target unif 
distributed in A. Consideration of k uniformly distri 
targets in A is obtained by using 

pk = 1 - (1 - at/A)
k 

instea., of (a «/A) Li   it J.S assumed 

(I)  rhe F.ibareos are chosen yucn that when more 
one lar/i . i.j In the i~n subarea, they physic 
unite ar  S appear as one targe*! *.o the sensor; 
g(t) ref^ec :s the increased size or  the ta^£* 

orr. .y 
bu t ed 

(?) 
(3) 

than 
ally 

t, and 

v reflect:, the increased size of the target. 
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TA » time spent searching the total area A 

For a fixed number of detections x, 

LA = W Td. + (n " x)Ts + n (d/v) 

j •• 
i=U T<1i + C1X + C3' 

(15) 

where c0 = n(T + d/v) and x.  is the time to detect a target 
o       S Q • 

•      th 1 

in the i * subare.a when a target is detected.  Assuming 

that the T, are independent with pdf given by (4) » 

fA*(t|x) = PrCt i TA - cxx - c3 <^ t + dt|x] 

= ^1(T)*£2(T)* ... **X<T), (16) 

where ths symbol * indicates the convolution of the densities 

Since each of the «C.(T) are truncated densities, the regions 

of integration must be carefully specified (as noted in the 

appendix to this chapter). 

From (16) it follows that 

fA(t|x) = PrCt < TA < t • dtjx] 

= fA*(t - c^x - c3|x). (17) 
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Then 

fA(t) Z  Li  fA(t-x) 

f.(t|x)<J>(x), (18) 
x=r A 

where 

•(x) = (2) PX(1 - p)n"X (19) 

T = time that the target remains visible 

and let 

h(i) dt = Pr[x <  TV < T • di] . 

•-• 

It is important to note that the distributions for the 
- • 

time until the first detection, the time to search area A, 

etc«, developed in equations 8-19 are solely dependent on 

knowing the distribution, *t(x), for the random variable T, . 

2*3    Simple Interval Visibility:     Time Zero  to Random Limit 

Consider next the situation in which the target or ob- 

server may move in the subarea such that intervisibility,       *» 

if it exists, starts at time zero and lasts a random time 

period. Therefore, we consider the random variable 

1 
1 
1 

Thus, rather than considering visibility of the target to 
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occur or not (with probability p ) for the whole period 

(0>T,,), we assume that a visibility time period of length 

T can occur during the interval (0>ts) and that This vi- 

sibility period begins at time zero.  Then the probability of 

detecting a target in an infinitesimal interval di at time x, 

Pi(x) is 

i 

D 

p.(x) = Pr[x <_  x<j £ x + dx | target present 

.Tv > T]Pr[Ty > x] 

J »hCt) dx = Lg(x) dTJ| J  -h(x) dx 

and therefore the probability cf detection is 

T 
/s 

g(T) H(T) dx, 

0 

(20) 

(21) 

where 

H(r)   = |  h(x) dT . 

X 
(22) 

Continuing in an analogous fashion to Section 2.2, we 

have 

Ä Pr[x < T, <  x + dx|xv > x]Pr[xv > x] 
Pr[x < TH < x + dx] =  

a PrTdetection] 
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or 

£(T) dT = &ill   <** H(T) 
Pi 

(23) 

and 

J  g(t) H(x) dT 
J)  

J   g(x) H(T) dx 

L(T) = -2-   •      (24) lit 

The probability of detecting the target is given by (13) 

and the distributions of the 

(a) tima until the first detection, given detection 

in n trials; 

(b) time to search A given x detections occur; and 

(c) time to search A 

are given by (14),  (17), and (18), respectively, when l(i) 

of (23) is used in (12) and (16). 

2,4    Simple Interval  Visibility:     Random Initiation and Limit 

In the last section v/e considered the visibility to 

have a random time limitation but it was restricted to be- 

ginning at time zero. Suppose the visibility period starts 

at u, where u is a random variable with probability density 

function f(u). Then the probability of detecting the target 

in an interval dx at time x, given that the visibility 

interval starts at time u, is given by 

r 
- 
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I ' 

i 
i 

I A 

• • 

! a 

I 

[ 
t 
i 

(  Pr[(x-y) < td < (T-y) + dx(target present 

PiCxJw)  =   { 
Ty >  T-II]   •  Pr(Ty >  t-|i) for T  >  y 

tor  T   <   y 

and 

pi(T) sy   f(|i>Pi<x|p) dy 

Pi -J   f(y)   I   g(x-y) H(T-P) dx dp . 

But the inaide integrand is zero for x < MS hence, 

>i •J    f(y)  / g(T-p) H(x-y) dx 
0     L„ 

dy 

After a change of the variable of integration, one obtains 

»i sJ  fCy) y    g(t) H(t 
ft       Ln 

) dt dy.     (25) 

i 

. • 
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Continuing the analogy with Section 2.3, 

1 TB 

jj     i- [g(.x-y) H(T-y)dT]du (26) 
s 

L(T) = JÜ2-2. 

1 

and the relevant pdffs are obtained by employing the deriva- 

tive of (26) in the appropriate equations as noted in 

that section. 

2.5    Areas for Future Research 

The methods described in this chapter provide a prelimi- 

nary description of the surveillance activity associated with 

the reconnaissance in force mission. The methods suggest a 

number of possible extensions that should be examined with 

further research.  These include 

(1) consider the time limit T_ as a random variable, 

(2) consider multiple targets in the i  subarea, 

(3) remove assumption p. = p, 

i 

P,- 

-- 

-» 

(H) consider multiple sensors in i  subarea, 

: 
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(5) allow the subareas to overlap, 

(6) include the range dimension since the input pdf's 

are range dependent, 

(7) include the sensor search directi n  and scan 

rate, 

(8) interface the surveillance activity description 

with the differential models of the combat 

activity, 

(9) determine "optimal" search strategies for the 

search sequence and time allocation for each 

subarea. Compare results to the classical 

search theories which do not consider the 

visibility process. 
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Appendix E, 2 

CONVOLUTION OF TRUNCATED DENSITIES 

Seth Bonder 

Equation 16 of the text is a convolution of truncated 

distributions -C.(T), i = l,2,...,x.  For x » 2, the dis- 

tribution of the sum is given by 

r 

A (t -T2H2(T2) di2    0 < t < TS    (1.1) 

f0(t) = < 
T2=0 

/  ^(t - T2)^2(T2) dx2  TS < t ^ 2T, 

[1] 

(1.2). 

LT2=t"TS 

i 
i 
! 

I 

The regions of integration are shown in Figure Al.  Equation 

^~ T 

Figure Al.  Convolution Region with x = 2 

..1 is an integration over region I and (1.2) over region II 

For x = 3, the distribution of the sum 1:=ci + T2 + T3 

is given by 

I! 
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t   f 

f3(t) = 

„    f2(t - T3«3(T3) dt3 
T3=0 

0 < t < T   (2.1) 

I 

/ 
=t- 

f2(t - T3U3(T3) dT, 

T3»t-T 

<r 
V° 

f2(t - T3)£3(T3) dT3 

(2.2a) 

Tr < t < 2T 
s —  —  s 

(2.2b) 

(2.2) 
[2] 

/ f2(t • ' 3>W dT3 
^V^s 

2T  < t < 3T .(2.3) S "~   —   s 

The regions of integration are shown in Figure A2. 

?T, 

lu 
Figure A2.  Convolution Region with x = 3 
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4 
The terniä in 2.1, 2.2a, 2.2b, and 2.3 are integrals over 

regions I, II, III, and IV, respectively.  The f«(t) functions 

in [2] refer to different parts of [1] as follows: 

In   (2.1),       f?(t  -   T-" 

In   (2.2a), " 

In  (2.2b), 

In   (2.3), 

g21   =   f2^  "   T3^     for   °  <   t   <   T 
—      —     s 

n      it it ii 

g.i2   =   f2(t   -   T3) "      Ts   <   t   <    2ts 

(I tl tl II 

For x = (n • 1) it is conjectured that the pdf of the 

sum is given by 

/   fn(t~WWW dVl    ° 1 t 1 T, [n.l] 
4n+l = C 

/ fn(t"WWW dVl 
Vl!t"Ts 

(n.2a) 

fnn(t) '< 

^t_T8 /    %  1  t   <   2T 

7     V^WWW dVl (n.2b) 
tn.2]     " 

/ V*-WWW dVi 

(n) 

Tn+lSt-(n-l)Ts 

t-(n-l)t 

I   7  '»^Vi'Vi'Vi5 dVi     tn-nb] 
T
nn"° J 

Cn.na] 

(II-1)T   <  t  <  r.T     [n.n] 

t 

J  Vt*,»»i,V»i(Ti.i) dVi 
Vl,1>nT« 

nx     : t <   (r.+l)ir 
5   *•• "• S 

Cn.(nH)]. 

i; 
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The f (t) functions in equation fn) refer to different parts 

of equation [n - 1] as shown in Figure A3 and below: 

In (n.l),  fn(t - in+1) = gnl = fn(t - xn+1) for 0 < t < T 

In (n.2a),     "     = " 

In fn.2b), 

In (n.3a), 

In (n.3b), 

• 
M  tt  ti   it 

n2   n     n+1     3 —  —  s 

ii  ii   ii   ii 

= 8n3 = V* " W " 2T
S i t i 3T 

In (n.ja), = *nj-l= fn(t * W "  (j*2)Ts 1 t 1 

In (n»jb), 8 Snj   = fBCt - Tn+1) -   (j-l)Ts < t < 

3Te 

In Cn.na] * 

In [n.nb] 9 

In Cn.(n+1)] > 

8 *n<n-l)s fn(t " W for (n"2)Ts < 
t < (n-l)i 

8 *nn   8 rn(t " W for (n"lhs 1 

t < ni —  s 
-  tt it       it   11 
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(n+l)x 

(n-l)T 

(n-2)T 

3T 

2T 

tsnV+   Vl 

t=   (n-l)Ts+   T 

t =   (n - 2)T    •   T £J  s n+1 

'8n3     • 
•nS 

gn2     , 

x      l s        n+1 

+•    -      T      4.      T 

«n2 

«nl    | 

s        n+1 

4-    -      T 

«nl 

 1- 

* '    n+1 

- 

- » 

I 

n+1 
: 

Figure A3.  Convolution Region with x = n + 1 

u 
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Chapter 3 

A MULTIPLE INTERVAL VISIBILITY MODEL 

Ralph Disney 

In the previous chapter we examined simplified cases of 

the surveillance activity as part of the reconnaissance in 

force mission. The structures considered (a) imperfect char- 

acteristics of the sensing system as measured by the distri- 

bution g(x), (b) simplified behavior of the target in terms of 

single periods of visibility to the sensing device, and (c) 

their interaction to determine the probability distributions 

of detecting targets.  In this chapter we consider just the 

visibility process to develop a more realistic description of 

the target behavior in terms of multiple intervals of visibility 

We are concerned with (among other things) the probability 

that a target is visible to the surveillance system's sensors 

at time t.  Specific questions of interest in this chapter 

are 

(1) For a given t, what is the probability that the 

target is visible, üT/*)? 

(2) Given that the target i«s visible at t, what is the 

length of time that he will remain visible? 

(3) In t . how many times will he be visible? s 

(4) In t i what is the total time of visibility? 

In the simplest case where detection occurs with probability 
LO if the target is visible,this is also the probability that 
the target is detected by the sensing device. 
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(5) If there are N independent targets,what is the prob- 

ability density function for the number of visible 

targets at time t? 

(6) If there are N targets, what is the probabilitv density 

function for the number of sightings in (0,t )? j 

3.1     The  Visibility Model 

Consider first the one target case such that at T = 0, 

the target is visible (this is not a crucial assumption). 

At T, the target becomes invisible. The length of (0,Tn)> 

say T,, we assume to be a random variable with probability den- 

sity function f,(t) and distribution function F.(t).  The 

target remains invisible until T2 and the length of the inter- 

val (T,,1«) is a random variable T2 with probability density 

f2(t) and distribution function F2(t). T, and T2 are not nec- 

essarily identically distributed but are assumed to be inde- 

pendent. This description assumes that the target is alternately 

invisible, visible, invisible, etc.  Succeeding lengths of time of 

visibility or invisibility are random variables, T,   , T^  , 

mutually independent, and the collection iT^ n ) is independent 

of the collection {Tj  } . The visibility periods are dis- 

tributed as T.   . The invisibility periods are distributed 

as fj  .  We could allow T^ * to be differently distributed 

than succeeding visibility periods but this generalization 

appears unnecessary at this time.  Likewise we could allow all 

i 



of the T( 
(n) 

to be differently distributed but there is nothing 

much to be gained except complex formulae. The crucial assumption 

for our present analysis is that the T.  's are an independent 

collection of independent random variables. Even this assump- 

tion may be relaxed, but it will not be done here. 

The mathematical structure that we impose on the target 

by the above assumptions is that of an alternating renewal 

process (Cox, 1962). Thus, we suppose that the target can be 

in one of two states with X(t) = 1 if the target is visible 

at t, and X(t) = 2 if the target is invisible at t.  If 

{T.: i = 1,2,...} are the times at which transitions occur, 

then we assume 

Pr[X(Tn) = 1 | X(Tn-1) = 2] = 1     n = 2,3,... 

Pr[X(xn) = 2 | X(xn-1) = 1] = 1 

Pr[Xdn) = i | X(Ta-1) = j] = 0 ,   o therwise 

In effect then, our target is behaving like a Markov chain 

over the states 1,2 when considered at the points of transition, 

(The process embedded at transition times is an embedded Mar- 

kov chain). The one step transition matrix for this chain is 

••(::) 
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In the simple case in which f,(t) and f2<t) are negatively 

exponentially distributed (n.e.d.), then {X(t)> is also a 

Markov chain in continuous time and is completely analogous 

to the machine breakdown problem in queueing theory with one 

machine and one repairman.  In th£ event f,(t) and f«(t) 

are not n.e.d., then ('X(t)} is not a Markov process (although 

{X(T )) is). Thus, the initially interesting problems occur 

if we do not  require f.,(t) and f«(t) to be n.e.d.  Because of 

the special structure of P, we call (X(t)) an alternating 

renewal process. 

A simple extension can consider several targets, each 

performing independently as an alternating renewal process. 

Let the stochastic process N(t) = the number of targets 

visible at time t. N(t) is a binomial process with p = n (t). 

Hence, analysis of this process should proceed in a straight- 

forward manner.  One advantage in introducing such a simple 

process is to allow an eventual extension to the case in 

which the targets are not  operating independently. 

3,2    Some He suite from Renewal Theory 

Some results from the theory of renewals will be needed 

to describe and study the visibility process.  We summarize 

these briefly here. A full discussion is given by Cox (1962), 

We introduce a renewal process as a sequence {X :n = 1,2,...} 

of independent, identically distributed non-negative random 

variables. The assumption of independence is crucial.  The 

assumption of identical distributions is not crucial,but makes 

. 



555 

. 

I  . 

developments easier. The non-negativity condition is certainly 

borne out in those cases of interest to detection. 

It is assumed that each X is a continuous random variable 
n 

with probability distribution function Pr[X < t] = F(t) and 

corresponding density function f(t). 

The sequence (S :n = 1,2,...) of partial sums, 

S„ = X, + X0 • ... + X n n n - 1,2,..., 

we call the "time until the n  event."1 Clearly, each $n 

has a density function easily determined (in principle) from that 

of the X .  Furthermore, {S :n = 1,2,...} is a Markov process 

in discrete time with a continuous-state space as i& seen by 

Sn= Sn-1+ Xn> n= 1>2  
For fixed n we define 

PrliS^ > t] = H (t), 
n —     n 

H (t) = 1 and the corresponding density hn(t). 

The stochastic process {N(t); t * 0 } is called the counting 

process for the renewal process and represents the total number 

of events occurring in the fixed interval (0,t). A fundamental 

. 2 
identity for renewal processes is 

For our later development it will be useful to include the 
event that occurs at zero in the count.  Hence, if we formally 
require X « 0, as such, then Sn is really the time until the 
(n+l)st event. 

2 
We have included the event at zero in these formulae. 
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N(t) < n iff sn > t , 

from which one obtains 

or 

Pr[N(t) < n] = Pr[S > t] = 1 - H (t) 
—        n n 

Pr[N(t) = n] = H , (t) - H (t) . 
n-±      n 

r 

The expected number of events E[N(t)] = M(t) is called the 

renewal function  and can be shown to be given by 

The 

M(t) = 

dM(t) 

Hn(t) • 1 

derivative —TT— = m(t) is called the renewal density 

function.    For well-behaved H (t) it is easy to see that 

m(t) = hn(t) . (1) 

A critically important observation here motivates our 

later work. Although m(t) is defined as the derivative of 

M(t), and m(t) can be obtained from (1) for given f(t), m(t) 

can also be considered as a probability .  In particular, it 

is observed from(l) that for a given interval (t, t i  At), 

hn(t)At is the probability that the time until the n
tn event 

occurs has a length of vt, t • At), In another sense, h (t)At 

i 

i 
i 
i 
i 
i 
I 
: 

Q 

0 
i! 
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th is the probability that the n  event occurs in the interval 

(t, t • At).  From (1), it then follows that m(t)At is the 

probability that some (perhaps the first or second or third...) 

event, after the one at 0, occurs in the interval (t, t + At). 

Thus, m(t)At can be interpreted as the probability that some 

renewal occurs in (t, t + At).  For At •* 0 one interprets 

m(t)dt as "the probability that an event occurs at tf( (more 

precisely, the probability that an event occurs in (t, t • dt). 

3,3    Application  to  the  Visibility Prooess 

With the background developed so far, it is clear that the 

visibility process (X(t)} is an alternating renewal process 

and that there exists a body of knowledge which can be applied 

directly. 

Figure 1 represents one realization of the (X(t)} process 

X(t) 

State 

(1) 

frr (2 r 

(2) 

71? 

(3) 

Figure 1  A Realization of the {X(t)> Process 
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We define 

And in general 

Y  . T (1) + « CD rl " 11     l2 

y        - T  (2)  .  T  (2) r2 *' Xl     l2 

v . T (n) . T (n) 
n " lX x2 

The sequence (Y :n = 1,2,...} is a sequence of independent, n 

identically distributed, non-negative random variables, or {Y } 

is a renewal process.  The independence condition follows since 

the T.   are all mutually independent and the Y are formed as 

nonoverlapping sums.  Hence, one can define a new stochastic 

process {Y :n = 1,2,...}, a renewal process, whose Y are 

identically distributed as 

gy (t) = fx(t) * f2(t) 
n 

where * designates convolution of the densities. 

In a similar manner let 

zisTi 
(i) 

Z2  T2   • lx 

Z - T (2) • T <3) Z3  T2     'l 

. 

• 

I 
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: 

and in general 

7  _ T (n-1)  „  (n) 
Zn " X2     + Tl 

Then {Zn} is also a renewal process with "lifetime" distributed 

as 

£z (t) = fx(t) * f2(t) for n = 2,3,..., 

and 

i7  (t) = f.(t) . z.     i 

Thus, {Z } has Z    differently distributed than the other Z . 
n ± n 

Except for this, {Z } is an ordinary renewal process.  Renewal 

processes with Z1  differently distributed than Z , n = 2,3,.,. 

are called delayed renewal processes. 

It is interesting to note that {Y } is a renewal process» 

{Z } is a renewal process, but {Z } is not independent of {Yn>. 

(n) 
For a given n, Z .- and Y depend on each ether through T2 

For each of the processes {Y } >{Zn> all of the results 

for renewal theory are valid (for the Z process one rrust adjust 

the formulae to account for ehe differences in the distribution 

of Z, and Z but this adjustment is trivial). 
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In particular, one has for fixed n 

ySn: If • Y2+...+ Yn  , 

7Sn  = z, * z0 • ...• z^ £t n   l   2'     n 

(YS ) is a stochastic process for the Y-process,which for the 

problem at hand is the time until the n  invisibility ceases 

Reinterpreted YS is a random variable giving the time until 

st the (n • 1)  appearance of the target.  Similarly, »Sw is a 

random variable giving the time until the n  disappearance 

of the target. 

If we define NY(t) = the number of occurrences of events 

in the Y-process, then NY(t) is the number of times the targe- 

is invisible in (0,t).  In particular N„(t ) is the number of 

times the target will be invisible in (0,t_).  From the funda- s 

mental identity of renewal theory 

Nv(t) < n    iff VS„ > t 
i   — in 

and 

PrCNY(t)£ n] = Pr[YSn> t] 

Hn-1 " V  n = 1>2'3' 
PrrNv(t) = n] = (   def 

"We are counting the occurrence at 0 in this process 
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which in principle can be used to determine the probability 

density function for the number of times the target is invi- 

sible in (0,t). 

In exactly analogous fashion, 

Pr[N7(t) < n] = PrC7Sn > t] z z n 

can be used to determine the number of times the target is 

visible in (0,t). 

Similarly, MyCt) = the mean number of invisible periods 

in (0,t), the renewal function for the Y-process; M^Ct) = 

the renewal function for the Z-process (visibili- ').  In 

principle, all of these values can be determined at this point. 

We would like to determine the probability that the target 

is visible at t, II, (t), for interaction with the detection pro- 

cess. That is, we would like to determine the state probability 

Pr[X(t) = 1] = JI.(t).  With the above information, this prob- 

ability is easily obtained.  Clearly, X(t) = 1 in two (and only 

two) mutually exclusive cases 

Here we do not count an event at 0. 
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Case 1.  The system is in state 1 at t because it 

was in state 1 at 0 and never left. 

Case 2.  The system is in state 1 at t because it 

became visible in (u, u * du) and remained 

visible for a time t•- u or more. 

The probabilities of these two cases are simple to deter- 

mine.  For case 1 to occur, the initial visibility period T, 

has to be of length t or more.  The probability of this is simp- 

ly 

PP£T. > t] = 1 - Fx(t) = F1
(c)(t) , 

Case 2 requires an argument but the facts are at hand.  For 

the target to be visible at t,having entered the visibility 

state (state 1) in (u, u + du), there had to be an occurrence of an 

event in the Y-process in (u, u + du).  From our discussion of the 

renewal density function, nuCu) du is the probability of an 

event in the Y-process occurring in (u, u + du). Vow  this event 

in the Y-process put the system into state 1 (every epoch in 

the Y-process is an entrance to state 1). For the target to 

be in the state 1 (visible) at t, this entrance to state 1 must 

have occurred and the target must occupy state 1 at least from 

u to t or for a length of time (t - u). The probability that 

the system enters state 1 at u and remains in that state for 

a length of time (t - u) is simply niy(u)[l - F,(t - u)]du. 

Since we are not concerned with when the target entered state 1 

.. 

: 

i 
i 

S.- 

- • 

I 
o 
y 
i 
i 
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only that it be in state 1 at t , the probability for case 2 

is 

ft 
J   nu(u) Fn

(c)(t - u)du . 
0  X    1 

Hence, in total 

nl(t) s pl  c*5 +/ my(u) 'i**!** * u) du 

n2(t) = 1 - nx(t) . 

Thus, one has, in principle, the probability that the target 

is visible at time t, n.(t). II At)  is the probability that the 

target is not visible at t. 

If we assume that the detection system is always observing 

the area of the target and will, with probability 1.0, and see the 

target if it is visible, then n-i(t) is the probability that the 

target will be detected at t. This may be the j  time it 

has been detected.  We have already discussed the number of 

sightings in (0,t). 

If there are N targets in the area> each independently 

acting as an alternating renewal process, then the number of 

targets visible at t will be a binomially distributed randoir 

variables with parameters IL(t) and N. 

A random variable of interest to interact with an imperfect 

detection process is T = the total time that the target is visible 
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in (0»O for some fixed value T . To determine the probabi- 

lities for T, one must consider two cases, illustrated below. 

Case 1:  xq occurs during an invisibility period. 

T (2) 

0*\, 

+ 
T (1T~  7^    T (2)       T 

s 

For a fixed value of Ny(Ts), say NY(xs) = h, 

T = T1
(1) + Tx

(2) + ... • T1
(n) . 

Thus it is clear that T is first the sum of h, independent, 

identically distributed r.v. and the density function of T is 

thus the h-fold convolution of f,(t) with itself.  Let fT<t) 

= f,(t) n, h fixed, denote this convolution.  But this is for 

h fixed.  Hence the joint density of T and NY is fT(t). 

Pr[NyTs) = h] = fx<t)*
h Pr[Ny<Ts) = h].  The marginal density 

PrCt < T < t • dt] = g (t) = JL f.(t)*h PTCNV(T ) = h] 
h*l x Y s 

where T = the total time spent in the visible state and T 

is fixed. The probability that case 1 occurs is H2<TS). 

J 

i 
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Case 2: T_ occurs during a visibility period. s 

. 

(1) (1)' (2) (2) 

(3) 

i 

Defining T as before, one can proceed as before. However, T 

is now made up of h - 1 random variables, T1 and one random 

variable, U, which is not a T, (it is the backward recurrence 

time of a T-). U is not a particularly appealing random 

variable so we seek another way to find gm(t) for this case. 

Define I = the total length of invisibility time in (0,T ). s 

Then clearly I can play the role of T in case 1. Hence, the 

unconditional density of I can be found exactly as in case 1. 

The argument applies from there with only a change of f«(t) 

for fx(t) and NZ(T$) for NV(TS). NOW, obviously, for fixed Tg, 

T - x8 - I . 

Hence, 

PrCT < t] = 1 - PrCl < T - t] . 

Since the density function of I can be found, the density function 
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PrCT = xa] =  1"- F1(TB) 

it« PrCT      t]   =  n2(xs)  /      >     f1(t)*hPrCNY(Ts)   =  h]dt 

D 
Ü 

I 
I 
I 

for T can be found for this case easily.  The probability that 

case 2 occurs is II,(T ). 1 s 

The total probability for T is then simply the probability 

mixture of the probability density function for case 1 [with 

mixing probability n2(Tg) = 1 - n1(Tg)] and the probability 

density function for T from case 2 [with mixing probability 

lud«,).]. This density function is valid for t < T . IS 5 

For t = ? § one sees immediately that Pr[T = Tg3 * 

F^^CTg).  Clearly, Pr[T > Tg] = 0. | 

Thus to summarize;  let T = total length of time the 

target is visible in (0,t_).  Then, s 

1<V j1 - r     2 f2(t)*
hPr[Nz(Ts)  - hWtj 

if t < t 
- 

fl 

Pr[T <  t]  =  1   ,       if t >  t   . IJ 
U 

y 

I 
I 
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MISCELLANEOUS RESEARCH AREAS 
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This part of the report presents results of research 

effort categorized as "miscellaneous research areas." 

Each area is so classified since (a) it may not be related 

to the mainstream of the project research as differential 

models of combat, or (b) only a small amount of study effort 

was devoted to the topic, thus, the analysis is not carried 

out in complete detail or merely sketches the direction of 

analysis. 

Chapter 1 describes research which adds the dimension 

of reliability and provides a structure for adding mobility 

to "one-on-one" stochastic duel theory. Chapter 2 considers 

optimal assault speeds for the variable attrition-rate, 

homogeneous-force battle model to maximize the ratio of 

survivors and also sketches a power series solution for a 

linear, heterogeneous-force, differential battle model. 

Analysis of ammunition requirements in context of differential 

models is considered in Chapter 3. 

Precaüiig page blink 
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Chapter 1 

RELIABILITY AND MOBILITY IN THE 
THEORY OF STOCHASTIC DUELS 

David Thompson 

Principal efforts in the research program have been 

devoted to extending the macroscopic differential theories of 

combat to include mobility of both forces, microscopic de- 

tails of weapon systems in predicting tne attrition rates, 

and the fact that the attrition rates vary when forces employ 

mobile weapon systems. This approach was taken based on the 

judgment that it would be more difficult at this time to 

enrich the stochastic duel theories (which already considered 

microscopic weapon system parameters) to include more than 

single duelists and simultaneously consider mobility of these 

forces. A small effort, however, was devoted to extending 

the "one-on-one" stochastic duel descriptions to include 

reliability of the duelist's weapons and initial elements of 

mobility. The results of this research are presented in this 

chapter following a brief review of existing stochastic duel 

theories. 

1.1    Survey of the Theory  of Stoohaetio Duels 

Although the theory has been extended under rather restric- 

tive assumptions to treat engagements involving many weapons, 

the "one-on-one" duel has received the most treatment. The term 
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"fundamental duel" is used in the literature to denote a one- 

on-one duel in which each weapon has constant single-shot kill 

probabilities, unlimited ammunition, unlimited time to complete 

the duel and a projectile with negligible time-of-flight.  The 

time between a contestant's rounds are independent, identically 

distributed random variables with both participants' firing proc- 

esses being initiated simultaneously.  The following outline 

gives an overview of published results in stochastic duel theory, 

One-Versus-One-Duelc 

A:    Fundamental duel.     Williams and Ancker (1963a) give the 

distribution of the time until a kill for a marksman firing at 

a pajsive target and give the win probability ft r a fundamental 

du^l.  Some variants of the fundamental duel are also given— 

the classical duel in which both sides fire at time zero, a duel 

in which one contestant gets a free shot at time zero, and a 

duel in which the element of surprise is probabilistic.  In a 

second article Williams and Ancker (1965a) developed the win 

probability for a fundamental duel with constant firing times. 

Groves (1964) also treated a fundamental duel with constant 

firing times, obtaining the probability that a side has survived 

the n  round, while similar survival models were treated by 

Schoderbek (1962a, 1962b). 

B.     Time duration,    Ancker (1966a) added to the fundamental 

duel the possibility of a time limit ending the duel in a tie 

if both opponents are still alive.  Time limiJs which are both 

i 
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fixed and random variables are treated, as are both constant 

and random firing-times. Williams and Ancker (1964a) later found 

the distribution and the first three moments of the time duration 

of the fundamental and the time-limited duel. 

C. Ammunition.     Ancker (1964a) gave a general solution 

for fundamental duels in which each side has a limited initial 

amount of ammunition which is either a constant or a random 

variable. Ancker and Gafarian (1964b) found the distribution 

and the first two moments of the number of rounds fired in a 

fundamental and an ammunition-limited duel. 

D. Time-of- flight.    Ancker (1966b) added fixed and con- 

tinuous random-projectile flight times to the fundamental duel. 

A delay procedure is treated in which a duelist waits to ob- 

serve the effects of a round before the next round is fired, 

as is a no-delay procedure in which there is no such wait. 

Time-of-flight, limited initial ammunition, and ammunition 

replenishment were all added to the fundamental duel by Jais- 

wal and Bhashyam (1966). They treated random time-of-flight 

with a no-delay firing procedure, assumed a fixed initial amount 

of ammunition on each side, and allowed fixed ammunition re- 

plenishment at negative exponentially distributed times. 

E. Round"dependent hit probabilities.     The possibility 

of a marksman improving his accuracy on successive rounds was 

considered by Williams (1964b, 1965b) in a fundamental duel with 

negative exponential firing times and with hit probabilities 
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following a Pascal distribution of their position in the firing 

sequence.  Bhashyam and Singh (1967) treated a similar duel with 

negative exponential firing times and hit probabilities which 

are general functions of the number of rounds fired, but with 

the added feature of each side starting the duel with a speci- 

fied amount of ammunition, either finite or infinite. 

F. Approximations.  Williams (1963b) obtained an approx- 

imation to the win probability in the fundamental stochastic 

duel in terms of the single-shot kill probabilities and the 

first two moments of the distributions of the firing-time 

distributions. 

G. Markov firing doctrine.     In the models treated so 

far in this survey each participant's firing times were either 

constant or were a series of independent, identically distributed, 

continuous random variables. Chapters 2 and 3, Part B, of this 

report describe methods of predicting the time-to-kill proba- 

bility distributions for systems that employ the Markov firing 

doctrine in which the time between rounds and the hit probabi- 

lities (after the first round) can each take on different 

values, depending on whether the preceding round hit or missed 

the target. These distributions can be used in a standard manner 

to obtain the win probabilities for weapons which employ the 

Markov firing doctrine. 

Many-Versue-Many Duels 

A,     Triangular and square duels,    Williams and Ancker 

(1965a) treated three cluster duels characterized by 

i 
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simultaneous, fixed-time firings and common hit probabilities on 

each side. One duel is a two-versus-one triangular duel, and 

the others are two-versus-two square duel. In one square duel 

the contestants are paired off until one is killed, at which 

time the opponents concentrate their fire on the remaining 

weapon. In the other square duel one side concentrates its 

fire on one of the opponents. A comparison of the two duels 

indicated that concentrating its fire lessened a side's chances 

of winning. 

B. M-veraus-N duels.     Similar M-versus-N attrition 

models with common hit probabilities and fixed firing times on 

each side were treated by Robertson (1956) and Helmbold (1966), 

who gave the probability that a given number of targets sur- 

vive a given number of rounds. Various methods of assigning 

weapons to targets and approximations to survival probabilities 

were considered. Schoderbek (1952b) did some similar work with 

random times between rounds. Helmbold (1968) incorporated a 

different attrition situation into a duel. The two sides trade 

a number of simultaneous volleys, but at each volley each sur- 

viving unit fires at a prearranged opponent, independently of 

whether or not it still survives. 

C. Relations  to differential models.     Williams (1963b) 

obtained approximate solutions to two M-versus-N duels in which 

the number of contestants was large and all weapons on a side 

fired simultaneously at negative exponentially distributed 

intervals with common kill probabilities. When all duelists 

i 
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could fire on any opposing unit at all times, the solution was 

the classical Lanchester square law, and when only individual 

combats were allowed, Lancaster's linear law was obtained. 

Robertson (1956) also mentions the connection of the M-versus- 

N duel to Lanchester's laws. 

Research Outline 

Ancker (1964a, 1966a) included some natural limitations 

of weapon systems in duels involving limited ammunition supplier 

and time limits. Another natural limitation of a weapon is 

the reliability of its firepower.  The denigration of a weapon 

may be due to factors such as severe natural environment, lack 

of preventive maintenance, and use of the weapon when fired. 

The first two factors concern the study of reliability and 

maintenance per se, while the third factor is more complex, 

since more than the temporary loss of firepower is at stake 

in combat.  Sections 1.2 and 1.3 of this chapter address 

catastrophic failures of firepower, leaving the duelist 

entirely helpless or forcing him to withdraw from the duel. 

Reliability is treated both as a function of time and as a 

function of the number of rounds fired, the latter as a more 

realistic model which relates the chance of breakdown to actual 

use of the system.  The probability of one side winning is found 

for all the duels, and the results are compared with those 

for the corresponding fundamental duel.  Some connections 

with stochastic duels found in the literature are noted. 

- • 
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• 

Ancker (1964c) notes that mobility has not been treated 

in stochastic duels with the exception of some very simple 

situations. Section 1.4 of this chapter treats stochastic 

duels with time-dependent single-shot kill probabilities, the 

main interpretation of this model being the dependence of hit 

probabilities upon range and range varying with time. The treat- 

ments of mobility in a duel is a new development, although a 

general attrition model with some similarities is treated by 

Farrell (1968a, 1968b, 1968c). 

Unless otherwise stated, the basic assumptions of the fun- 

damental duel are employed in this chapter.  These assumptions 

for each duelist are 

(i) The hit probability is a constant; 

(ii) The time between any two successive rounds 
follows the same probability distribution; 

(iii) "Hit probability" is synonymous with "kill 
probability"; so the effect of a hit is 
not cumulative. 

1,2    Stoohastie Duels Involving Continuous Reliability Processes 

Two weapon systems, A and B, have firepower subsystems 

which are subject to mechanical failure independent of vul- 

nerability to the opposing weapon. The lifetime of each 

firepower subsystem is a continuous-valued random variable with 

known p.d.f. A failure is catastrophic and cannot be repaired 

on the battlefield. If a failed weapon is capable of with- 

drawing from the duel, there are two possible times at which 
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the withdrawal can be made.  The failure may be detected at the 

instant it occurs, and the retreat made then, or the failure may 

not be detected until .an attempt is made to fire the next round 

and the firepower subsystem is found to be inoperable.  Let 

L. = lifetime of A's firepower subsystem, 

Lg = lifetime of B's firepower subsystem, 

r.(t) = p.d.f. of A's lifetime, 

rß(t) = p.d.f. of B's lifetime, 

RA(t) = Pr{LA > t}, 

RB(t) = Pr{LB > t}. 

1.2.1    So Withdrawal Case 

In this case a failed weapon remains in the duel, which 

is terminated only by -»-hat weapon's destruction or by the oppon- 

ent's failure.  Since the firing sequences of the two duelists 

are independent, as are their reliability processes, the un- 

coupling property used to study the fundamental duel can be 

employed.  By the uncoupling property the duel can be regarded 

as equivalent to a marksmanship contest in which the partici- 

pants fire independently at separate targets. The first duelist 

to destroy his target wins the duel, but if both contestants 

fail before a kill occurs, the duel is concluded as a tie. 

Each duelist's firing sequence in  independent of his 

reliability process until a breakdown occurs in his firepower 

subsystem.  No more rounds can be fired after a breakdown. 
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With the independence in mind, the following symbols will be 

defined for a marksman subject to no breakdowns.  Let 

pA = Afs single-shot kill probability, 

pB = B's single-shot kill probability; 

f.(t) = p.d.f. of the time between Afs rounds; 

fg(t) = p.d.f. of the time between B*s rounds; 

T s time for A to destroy a passive target, given 
A  he is free from failures» 

T« = time for B to destroy a passive target, given 
he is free from.failures. 

If we let 

hA(t) dt = Pr{t < TA < t + dt} , - *A 

then the p.d.f. of T. is 

i 

hA<t) -. ^ pA^*-v*<t> 

where q. = 1 - p. and f. n(t) is the n-fold convolution of fA<t) 

with itself (Williams and Ancker, 1963a).  The density hß(t) 

is defined in the same *»ay. 

Each marksman is subject to failures.  Let 

gB(t)dt = Pr{B kills his target in the interval (t, t + dt)} 

gB(t)dt = Pr{LB > ft < TB < t + dt} 

Then gg(t) = hg(t)RB(t) since B can kill at t only if his life- 

time is greater than t. The probability that B has not destroyed 

his target by t is 

L 
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/ 
1   l    hß(x)RB(x) dx  . (1) 

Then the probability that A wins is the probability that A 

destroys his target before A fails and before B destroys his 

target.  The probability A wins is 

P(A) 

00 

•/ 
hA(t)RA(t) 1 - / hB(x)RB(x) dx dt (2) 

Since withdrawal from this duel is impossible for a failed 

weapon, a tie can occur only if both weapons fail before a 

kill has occurred. The tie probability is 

i 

: 

i 

P(AB)  =  Pr{LA <  TA-LB <  Tß>     , 

and since the behavior of the two marksmen is independent, 

PCAB)  =  Pr{LA <  TA}   •   Pr{U <  T0}     , B " AB- 

and 

F(AB) = •f"W hA(x)dx dt fc'il hg(x)dx dt  (3) 

As an example, consider that the times between rounds and 

failure times are all negative exponentially distributed. Then 

fA(t) -  YAe 
-v fn<t) = Y„e -v 

B B' 

rA(t) = AAe 
-v rB(t) = XBe -

XBt 

I 
I 
I 

if 

0 

D 
0 
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then 

*n    •YA(YAt)  * 
A (n-D! 

hA(t) = pAYAexp("PAYAt) 

HÄCt)  5 PnYßexp(-pnYRc) 'B B'B'^^^B'B 

The probability that B has not killed his target by t, obtained 

by substituting into (1), is 

\PBYB 
+ v    ypBYB 

+ >B/ 
exp[-(pBYB +  XB)t] 

From (2) 

• PAYA[XB(pAYA * XA * PBYB * XB)  » PB^fBCpAlfA * XA)] 
P(A) VA * »A»VB 

+ V^A + VB 
+ *7 

When AA =  0 and Xß =  0, 

P(A) = 
PAYA 

PAYA + PBYB 

I 

the result obtained by Williams and Ancker  (1963a)  for the case 

of exponential firing times without considering reliability. 

Using  (3),  the probability of a tie is 

P(AB)  = AB 
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which is zero whon breakdowns are impossible.  If P(B) is 

found by a formula symmetric to that for P(A), it can be shown 

that P(A) + P(B) + PCAB) = 1. 

P(A) = Pr{TA < TB-TA < LB-TA < LA> 

(»•) 

/' 

hA(t)  I hB(x)dx RB<t)RA(t) dt 

Since a duelist may leave the duel when his weapon fails, a 

tie occurs when either weapon fails before a kill has occurred 

The tie event is composed of two disjoint events: 

P(AB) = Pr{LA < TA-LA < TB.LA < Lß} 

*  Pr{LB < TA-LB < TB«LB < LA> 

I 
I 
I 
I 

1.2,2    Withdrawals at Failure Points 

In this case a weapon is removed from action at the 

instant it breaks down, ending the duel in a tie if no kill has 

yet occurred. Side A will win the duel if his time-to-kill 

is less than B's time-to-kill and less than both lifetimes of 

the firepower systems. X 

i 
i 
i 

D 
D 
0 
Ü 

0 
0 
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00 f« 

/ *A(t)*B(t)/ hA(x)dxy hB(x)dx dt 

+ / rB^t)RA(t)/ hA(x)dx/ hB(xMx dt .  (5) 

t 

In order to show that in general P(A) + P(B) + P(AB) = 1 

the following notation will be used:  Let 

HA(t) * J   hA(x)dx 
t 

HB(t) = J   hB(x)dx . 
t 

From (»O and (5), and the fact that P(B) may be obtained by 

the same steps as P(A), 

P(A) + P(B) + P(AB) = J    rA(t)RB(t)HA(t)Hß(t) dt 

0 
• 

00 

+ J   rB(t)RA(t)H^(t)HB(t) dt 
0 

t 
+ J   hA(t)RA(t)RB(t)Hß(t) dt 

0 

00 

• J    hB(t)RA(t)RB(t)HA(t) dt 
0 
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CO 

- f  RA(t)RB(t)d[HA(t)HB(t)J 

00 

/ 

d[HA(t)HB(t)RA(t)Rß(t)] = 1. 

The last step obtains since rA(t), rß(t), hA(t), and hß(t) 

are probability density functions. 

As an example, again consider all the densities to be 

negative exponential.  Equation .4 reduces to 

PAYA P(A) =        /l 

VA * XA + PBYB 
+ XB 

and (5) yields 

- *A + XB 
P(AB) = A 

PAYA + AA + PßYß + XB 

When ,\A • An = 0, PCA) becomes the solution for a fundamental 

duel with n.e.d. firing times. 

The duel which permits withdrawal can be considered as a 

duel with a random time limit.  The time limit occurs when 

either A or B suffers a breakdown.  Let L(t) be the distribution 

function of the time limit.  Then 

. 

= - f  HA(t)HB(t)d[RA(t)RB(t>] 

.. 

ii 

y 
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1 - L(t)"= Pr{LA > t} *Pr{LB > t} , 

since the reliability processes are independent, and L(t) be- 

comes 

L(t) = 1 - RA(t)RB(t)  . 

Either by differentiating L(t) or by a probabilistic argument 

the density of the time limit can be found to be 

Mt) = rA(t)RB(t) • rB(t)RA(t) . 

Stochastic duels with random time limits have been treated 

by Ancker (1966a), where he also treats fixed firing times and 

fixed time limits.  The duel treated above can be viewed as 

a duel in which each participant has his own random time limit. 

The results agree with those of Ancker when negative exponential 

reliabilities and firing times are used with the above formula for 

at). 

1,2,3    Withdrawals  at Firing Points 

Consider again the assumption that a failed weapon can with- 

draw from the duel, but in this case the failure is not discovered 

until the first attempt to fire a round following the failure. 

Let 

TA = A's time to destroy a passive target, 

Tg = Bfs time to destroy a passive target, 

LA = lifetime of A's firepower subsystem, 

LB = lifetime of Bfs firepower subsystem, 

L{ = time A detects his failu*^. » 

Lg = time B detects his failure. 
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Note that  (i) LA <_ LA and  (ii) LA and T. are dependent such 

that A kills his opponent only if T. < L..  The probability 

that A wins is simply 

P(A) = Pr{TA < TB • TA < L* • TA < L*> . 1 

Since the firing sequences of the two contestants as marksmen 

are dependent, 

CO . 

P(A) = f  wA(t) . Pr{TB > t • LB > t}dt , (6) 

where 

wA(t) dt = Pr{t < TA < (t + dt) . LA > t} 

and 

Pr{t < TA < (t + dt) . LA > t} 

wA(t) = hA(t) j  rA(x) dx (7) 

The probability that B has not killed his target and no, dis- 

oover:;d a failure by time t is 

Pr{TB >   t-LB > t} = 

00 

n= 
lB fB (x)J dx 

• / fB(x ) dx 

-- 

.. 

ü 

. 

i 

<: 

- 
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Assuming all the p.d.f.'s are negative exponential, (7) 

becomes 

i! 

r 
i 

3 

wA(t)  = PAV
xp["(pAYA + XA)t] 

From (8) 

Pr{TB >  t.L* >  t}  = exp(-Ygt) 

+ qBYBexp(-YBt)  j    expC(qßYB -Xß)x]dx 

Two possibilities exist in evaluating  (8).    If qnY« * XR , B'ß r  AB 

mt,. t.L; > t). Ly_B ,j =«p[-(pBre. »Bi«j 

!; • fett) "•"•*> • 
!  I        and if VB 

= V 

Pr{TB > t.LB > t} = (qBTBt + 1) exp(-Yßt) . 

From (6) the probability that A wins is 

[1 
' P(A) - PAYA(pAYA » AA * YB + V 

(pAYA + XA + VCpAYA + AA + PBYB * V 

for both the cases. For n.e.d. firing times, P(A) reduces to 
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- 
the solution for the fundamental duel. 

Since the formula for P(B) is symmetric to that for P(A), 

the tie probability is 

- 

P(AB) = 1 - P(A) - P(B) 

" (
PAWV

(
PBVW<PAWPBW * 

1.2,4    The Effeot of Reliability  on Duel Results 

It is possible that a weapon's chances of failure during 

a duel are so insignificant that a model including reliability 

processes need not be used to predict the duel outcome.  One 

criterion for deciding whether there is a significant differ- 

ence between the fundamental duel and the duel including 

reliability is the relative error in the win probability.  Let 

- 
Pf(A) = P(A) for a fundamental duel, 

P (A) = P(A) for a fundamental duel with reliability 
processes included. 

Then an a significant difference between the models exists if 

Pf(A) - Pr(A) 
• > a 

Pf(A) - Pr(A) 

V*T 

for some arbitrary a. For the n.e.d. failure and firing times 

and the withdrawal case given in section 1.2.2, this condition 
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becomes 

*A*A + *B*B 

This expression indicates that an a significant difference 

exists if the ratio of the sum of the failure rates to the 

sum of the attrition rates exceeds a specified a value. 

If the error is measured relative to Pf(A) rather than 

P (A), the condition becomes 
• 

Pf(A) - Pr(A) 

 ~p^Ä3— > a     ' 

For the preceding example this reduces to 

Pr(AB) > a > 

where Pr(AB) is the tie probability for the reliability  model. 

This analysis suggests that there is little need to include 

reliability in models of many battlefield situations, such as 

tank duels, which are usually characterized by high attrition 

rates. However, there are some situations in which reli- 

ability can be an important factor. One class of situations 

is that characterized by abnormally high failure rates, which 

may occur when a weapon is in a harsh natural environment or 

has been in the field for a long time without preventive 

maintenance. Another class of situations is characterized by 

low attrition rates, which occur when well-entrenched positions 

• 

> a . 

• 
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cause low single-shot kill probabilities. 

Two possibilities were considered when a weapon was . 

allowed to withdraw from the duel at the discovery of a fire- 

power failure.  In Section 1.2.2 retreat was possible at the 

instant of the failure. The probability A wins in this case 

will be called P,. In Section 1.2,3 a breakdown was not dis- 

ease will be called P«. It can be shown that 

p2*p 1 ^ »A*A****-V7 

2*1 Stoohaetio Duels Involving Round-Dependent Failures 

A weapon may be such that failures occur only at those 

instants at which rounds are fired and that the probability of 

failure on any round is a function of its position in the firing 

sequence.  The function could vary from duel to duel for any 

weapon because of varying usage and preventive maintenance. 

t 
covered until an attempt was made to fire the next round, at 

which time retreat was possible. The probability A wins in this 

I 

The correction factor in parentheses can range from one to in- 

finity, indicating that Section 1.2.2 underrates A's chances       I 

if the assumptions of Section 1.2.3 hold. One might conjec- 

ture that in practice Xß will be small compared to PAY» + 

X. + YB, so that the use of the simpler model of Section 1.2.2 

would suffice under both sets of assumptions. 

i 

.. 

;; 

i 



593 

T 

n 

0 

0 
I 

D 
ü 

D 

u 
0 
0 

This type of reliability assumption relates the chance of 

failure to actual usage of the weapon. 

The number of the round on which the failure occurs is a 

random variable and since the number of rounds fired by a 

weapon is one less than the number of the failure round, the 

number of rounds allotted to a weapon in a duel is also a ran- 

dom variable. This fact means that the reliability duel is 

similar to a duel involving limited ammunition, in which the 

number of rounds a weapon has at the start of the duel is a 

random variable. 

1.3.1    No Withdrawal Case 

In this case the duel is continued until one of the 

opponents is destroyed or both duelists suffer firepower- 

failures.  Let 

ak = **r^ fails on round k + 1} 

= P_ {A starts with k rounds of ammunition) r 

0j = Pr(B fails on round j + l} 

= Pp{B starts with j rounds of ammunition), 

where 

and 

ak = x 

£«.- 
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Since the failure probability can be interpreted as the 

probability of being allotted k-1 rounds of ammunition, the 

reliability-limited duel has the same mathematical form as a 

duel with a random allotment of ammunition. This duel ends 

only when one duelist is killed or both run out of ammunition. 

Ancker (196Ua) obtained a solution for the random ammunition- 

limited duel without withdrawal.  By defining 

krl 

,A1*W " *A A* *k 

h„,(t) similarly, and by letting 

CD 00 

= £  hB1(x)dx • 2, «k<lA  • 

the win and tie probabilities are found by Ancker to be 

GB(t) 

00 

P(A) -   I    GB(t)hA1(t)dt 

(AB) = S a.q* £8jqB . 
3 

1,3,2    Withdrawal  Case 

In this case we assume that a failed weapon can withdraw 

from the duel without delay, ending the duel in a tie.  This 

duel is similar to an ammunition-limited duel in which retreat 

is permitted. A participant is allotted N rounds at the start 

of the duel and fires all N rounds if possible.  In a duel 
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studied by Ancker (196Ha) the duelist withdraws at the instant 

he fires the N  round. An alternative, however, is that the 

duelist does not know that the N  round is the last. He will 

attempt to fire the N + 1st round and withdraw when he finds 

that his weapon does not fire. If we take the probability of 

being allotted N rounds as the probability of a firepower 
1 

failure at the N + 1st round, this duel is seen to be equiv- 

alent to a duel with reliability included. This situation 

has not been treated in the literature. 

Ideally, the probability of breakdown at a firing point 

should be a general probability function of the number of rounds 

fired, but for the sake of achieving a mathematically trac- 

table model, the probability of a failure will be a constant, 

independent of the number of preceding rounds. As before, the 

times between rounds are continuous, independent random variables, 

and the duel is stationary in the sense that the single-shot kill 

probabilities remain constant. Let 

p. = Pr{A!s round fires and hits the target}, 

PB = Pr{B's round fires and hits the target}, 

qA * Pr{A's round fires and misses the target}, 

q« = Pr{B!s round fires and misses the target}, 

u. = Pr{A's round fails}, 

uB = Pr{Bfs round fails}, 
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where 

?A • <*A 
+ UA = x 

and 

PR 
+ Qn + uR = 1 • B B 

The number of rounds a side is allotted to fire at a passive 

target is geometrically distributed. The probability that a 

firepower breakdown occurs on round n+1 is 

Pr{A has a supply of n rounds} = uA(l - u*V . 

This two opponent duel can be considered as a marksman- 

ship contest. A and B start at the same time firing at passive 

targets. The one who destroys his target first wins the duel 

if his opponent has not as yet retreated. A can win the duel 

at time t only if he hits the target at t, he has not failed 

or hit the target before t, B has not hit his target yet, and B 

has not failed before t. The probability that A kills his tar- 

get in the interval (t, t + dt) is given by 

hA(t)dt = n-l,-*n, §{ Wt *V<tWt • 
'n . where f.  is the n-fold convolution of A's firing-time distri- 

bution with itself. That is, for some n, his n  shot hits 

the target at t with none of the preceding n-1 rounds hitting 

or failing to fire. .. 

.. 
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The probability that B has arrived at time t without 

killing his target or suffering a failure of his firepower 

system is 

Gß(t) = Pr{B fired no shots in (0, t)} 

+ Pr{B fired one shot in (0,t), which .nissed} 

+ Pr{B fired two shots in (0,t), which missed} 

+ '   »• • • 

The probability that B fired no shots in (0,t)  is 

fg(x) dx . 

The probability that exactly n rounds were fired in (0,t) is 

/ f*n(x) jLfß(y) dy dx 

where the integral in brackets indicates that the n + 1st round 

*n has not been fired by time t and where fß is the n-fold 

convolution of B*s firing-time distributuion.  Since the proba- 

bility that all n rounds missed the target without causing 

a firepower failure is qR, the probability that B is operative 

at t and has not destroyed his target is 
00 

GB(t) = /fB(x)dx 

If^ljf fjn (x)l/x 
fB(y^yJdx   . 
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I 

The win probability is the integral over all t of the probability 

that A is atlt t^- effect a win at t, 

«> 

(A) = J    hACt)GB(t) dt . 
u 

A tie happens wh^n either si^e  fails before a kill has 

occurred.  This event is the union of two mutually exclusive 

events, that A :ails before B fails or a kill occurs an.l that 

b fails before A fails or- a kill occurs.  Wc consider first 

the probability chat A fails before b  fails or a kill occirs. 

The probability that A fails in the interval (1, t • it) 

without having hi1 r.'.s   target is 

»A V(t' dl 

and   the  pxvbaM.i?*/  that   b has  neither hit  ris  t    g-»t   nor   broken 

. v.r.  bv   t ir.e  t   .3   [•i^T   T. ft).     The  probability  That  A  fail» 

:ir:r   and   causes  a   tie   ; r,   then 

/    w.tt)G,(i)dt 
0 r 

Hy  •'.    iimi^ai   drg-n.ert   let 
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SA( 

00 

fA(x)dx + 

00 

'n 
f»"(x) 

00 

fA(y)dy dx 

The tie probability is 

P(AB 

00 00 

) = J   w (t)GR(t)dt + / w (t)G.(t)dt  . 
B* ' A 

As an example, let the firing-time distributions be negative 

exponential. 

fA(t) = YAe 
"V 

fB(t) = YBe 
-v 

Using the fact that 

f>) 
YA(YAt)

n-1e A 

 <n - 1)!  ' 

and similarly for fB(t), it can be shown that 

-(pA^uA)YAt 
hA(t)dt = pAYA, dt 

and 

GB(t) = e 
-(pB+UB)YBt 

The win probability is then 

P(A)  = 
PAY A'A 

(PA
+ UA)YA *   (PB

+ UB»B 
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Developing P(B) in the same way P(A) is found, it can be shown 

that P(A) + P(B) + P(AB) = 1. 

1,4    A  Duel with Time-Dependent Hit Probabilities 

The literature of the theory of stochastic duels has dealt 

almost exclusively with combat situations which are static 

with respect to mobility.  In all models in the literature 

a weapon's single-shot kill probability is either a constant 

or a function of the round's position in the firing sequence. 

The latter situation is most simply interpreted as "homing," 

the improvement in accuracy a marksman makes in successive 

shots at a target.  Neither constant nor round-dependent kill 

probabilities are  adequate to mocel a aynamic duel situation in 

which the distance between the opponents varies, arid their 

4 

For uA = 0 and uß = 0, P(A) becomes the solution to the fun-       * 

damental duel with n.e.d. firing times. * 

Substituting into the equations for the tie probability,       f 

-<PA
+uA)YAt 

wA(t) . UAV     
A A 

-(pR+uH>YRt 
wB(t) - W  B B B 

-(pB+u_)tBt 
GA(t) » *  B B B 

FCAB) -      VA + VB 
} " <?A + UAJ*A + <PB + «B^B 

- « 

-- 

t 
' 

i 
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single-shot kill probabilities subsequently vary with time. A 

simple extension of the one-on-one is described in this section 

in which time-dependent kill probabilities are considered, and 

the win probability determined. 

The duel situation is a fundamental duel in which the firing- 

times are negative exponentially distributed, but the hit pro- 

babilities are allowed to be continuous, integrable functions of 

time bounded by zero and one.  The problem of a marksman firing 

at a passive target will be treated first, then the uncoupling 

property will be used to obtain the duel win probability. 

Let 

Y^t = Pr{one round is fired in (t, t + At)}, 

p(t) = Pr{a round fired at time t destroys the target}, 

G(t) = Pr{the target is alive at time t}. 

It should be remembered that 1/Y is the mean time between rounds. 

The probability of more than one round being fired in t is just 

0(At), where 

0(At) = terms of the order of At, such that 

Q(At)/At •+ 0 as At •* 0 

From the above definitions, classical arguments lead to 

G(x + Ax) = G(x)[l -YAx] + G(x)YAx[l - p(x)] + 0(At) 

= G(x)[l - Yp(x) Ax] + 0(At) . 
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%y  subtracting G(x) and taking the limit as x approaches zero, 

the derivative of G(x) is found to be 

dG(x)/dx = -Vp(x)G(x) . (9) 

Rearranging (9) and integrating both sides from zero to t 

yields 

/« --TAW«. 

Since 6(0) = 1, the left-hand side can be written simply as 

lnG(t) - lnG(O) = lnG(t), and G(t) can be written as 

G(t) = expl-Yjf p(x)dx j . (10) 

Now let h(t)dt be the probability that the marksman effects 

his kill in the interval (t, t + dt). If G(t) * 0 as t '•*•  « , 

h(t) is the probability density of the time to effect a kill. 

Using the fact that the probability of a kill by time t is 

1 - G(t)5 h(t) = -dG(t)/dt.  Then by substituting (10) into 

(9) , 

h(t) = Yp(t) expl-Y J   p(x)dx j . (11) 

A duel between two sides, A and B, can be considered as 

a marksmanship contest in which the first side to destroy his 

target is the winner.  The probability A wins is 

-» 

. 
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00 

P(A) - J    6B(t)hA(t) dt , (12) 

where Gß(t) is the probability B's target is alive at t, 

and hA(t)dt is the probability A effects a kill in the interval 

(t, t + dt).  If the firing rates and hit probabilities are 

appropriately subscripted, P(A) becomes 

00 

PCA) = J    YAPA(t) exp \-4 PA(x)dx - YB 
t      -. 

^PB(x)dxJ dt . 

Similarly, the probability B wins is 

P(B) = / GA(t)hn(t) dt i    A  B 

Using the fact that hA(t)dt = -dGA(t) and hß(t)dt = -dGß(t), 

P(A) + P(B) = GA(0)G (0) - lim G.(x)G (x) . 
X^-oo 

Since GA(0) s 1 and Gß(0) = 1, P(A) and P(B) will sum to one i£ 

and only if, GA(x) or Gß(x) approaches zero as x approaches 

infinity.  Each of these events will occur if f   PA(x) dx 

or f   PD(X) dx is unbounded.  The probability of a tie is 
0 

i 

P(AB) = lim GA(t)Gß(t) , 

which is zero when the probability of a kill is a certainty for 

either A or B. 
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If PA(t)   =  p.  and ?n(t)   =  pB>  constants  for all t,   then 

from  (10)  and  (11),  Gß(t)  =  exp[-pßYßt]  and hA(t)  =  PAYA 

exp[-pAYAt]  and   (12)  gives  P(A)   =  PA
Y
A

7
 
(pAYA  +   PBYB)#     Thls  id 

the result of  the classic fundamental duel, 

i 
r 

1,4.1     A   Closing Engagement 

Consider a duel in which the duelists start at a given 

distance r , close at a constant speed v for a given time s 

t , and then halt and finish the duel if necessary.  It is 

assumed that for the distances involved, the single-shot kill 

probabilities are inversely proportional to the square of the 

distance between the duelists.  The distance between the 

duelists at any time t is 

r = r •:• vt *   0 < t < t s —  — o 

r = r + vt , t < t 

since v = dr/dt is negative.  Employing the above assumption 

for distances between r + vt and r , the single-shot kill so     s 
2 2 probabilities are pA = a/r and p_ = b/r .  As functions of 

time the kill probabilities are 

i 

: 

! 

I 

PA (t) = 
(r + vt) s 

(r + vt ) s    o 

0 < t < t 
—  — o 

7 •   »o^ 

; 
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'B 
(t) = 

(rs   +  vt) 

(r + vt ) s    o 
1• 

0 < t < t 
—   —  O 

*o «*• 

The integrals of the hit probabilities with respect to time are 

/ 

at 

PA(x)dx = '   s s 

"Al + PA(to}t ' 

0 < t < t —  — o 

*o «* 

-• / PB
(X) dx = J   s s 

bt 
r Ir, + vt) 

Bl •PB
(to)t. 

where 

0 < t < t —  _ o 

o —    > 

n 
i 

and 

avto/(rs • vtQ)
2 

2 o bvt /Cr + vt )' 
os    o 

The integration to find P(A) can be done in two parts. 

/ 6B(x)hA(x)dx Z\ • fl - exD|"-   (8YA UVVl] 

00 

/ GB(x)hA(x)dx = a\       ewr       (3YA  *  bVtJ 
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Then 

P(A) = *YA/(aYA 
+ kYß) 

It is interesting to note that F(A) is independent of the 

initial distance of the duelists, the attack speed, and the 

final distance.  This is due to the fact that the kill proba- 

bilities are always in a constant ratio and each marksman is 

certain to kill his target given enough time.  In fact P(A) 

always equals aYA/(aYA + bYy) under the following conditions 

and 

where 

and 

PA(t) = ag(t)  a t   0 

pR(t) = bg(t)  b i  0 

0 < g(t) < max(l/a, 1/b) 

J    g(x)dx -*• w  as t -*• °o 

f 

f 

! 

1.4.2    Flight Time and Mobility 

Stochastic duels witn flight iihie^  were considered by 

Ancker and Gaiarian (1'JüDJ) und structux'ally includes the 

effect üi rr.obiiity.  Projectile ilighi :imeb which vary 
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P 

linearly with time were added to the fundamental duel, which 

could describe an engagement in which forces are closing or 

separating at a constant speed. Ancker's model was a very 

special case of a dynamic engagement, since the kill prob- 

abilities of the participants were constants over time. A 

more realistic situation would be to allow flight time and 

kill probability both to change with distance. This is con- 

sidered below, using Ancker's assumption of linear flight 

times. 

The situation consists of two participants separating or 

closing at a constant speed, then halting and finishing the 

duel.  If T is the flight time for side A, then 

* 

•- 

m s di/dt a constant, 

b = T at initial posiiton in duel, 

a = T when duelists halt. 

The time-of-flight for A's projectiles is then 

# 
T = b + mt  for 0 < t < (a - b)/m 

T = a for (a - b)/m < t . 

The probability A wins is given by Ancker as 
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P(A)   -   /       h.(t) / hB(x)dx 
vi+nwt + b 

dt 

* 4vt) 
m 

/   hc(x)dx 
t*a B 

dt , (13) 

whore h,(t) is the p.d.i. of A's time-tc-kill and hfi(t) is the 

p.d.f. of  B's time-to-kill.  Both functions are p.d.f.'s 

::ince the hit probabilities are constants after the duelist 

halts and a kill is a certainty for each participant given 

enough time.  Mobility is taken into account in the probabili- 

ties if the kill-time densities are  defined by (11). 

Equation 13 dees not easily lend itself to integration in 

the case of time-dependent hit probabilities, even though firing 

times are limited to the negative exponential distribution. 

Tf hit probabilities are constan': with respect to time, 

the integration is straightforward producing Ancker':: result 

PCA) = pA>AeXp<-pBYBb) jexp[-(pAYA • p^G • m)(^))J 

1 PAYA + PEYB   ?AY A 
+ PaYB

(1 + m)J 

PA-A '':Vb(1,l/ J 

' 

when " .,*':.        . ;..:.: '   ,.  t irr.e,  .. :..>•, ; KA) 

i • comes ne . r. .a"'it. ' : . iu c - w . s... ri. •. . •. 



609 

i 

I 
•» 

Ü 

u 

1,4,3    Time'Dependent Firing Rate 

The duel with time-dependent kill probabilities can be 

considered a special case of a duel with the firing rates and 

kill probabilities all dependent on time.  Let r(t)t be the 

probability that exactly one round is Fired in the interval 

(t, t + at).  If the time-dependent firing rate is used instead 

of the constant rate, (9) becomes 

dG(x)/dx = - Y(x)p(x)G(x) , 

(10) becomes 

[-( •] G(t)  =  exp[- J   Y<x)p<x)dx|   - 

and (11) is now 

h(t) s y(t)p(t)exp -J Y(x)p(x)dx   , 

(!<•) 

(15) 

i.e., the distribution of k'lling events in time is a  non- 

stationary Poisson process as before.  If we assume 

PA<t)YA(t) 

PB
Ct*B(t; 

where k is a constant and 

= Jc t > 0 , 

/ p.(x)YA(x)dx • • as c * • , 



- .. 

then substituting (i4*) and (li>) into (12) leads directly to 

PCA) = k/(k + 1) . 
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Chapter 2 

SOME THOUGHTS ON ANALYSIS OF DIFFERENTIAL 
MODELS OF COMBAT 

Robert Farrell 

This chapter presents some brief thoughts on analysis of 

differential models of combat.  The thoughts are sketchy but 

are deemed sufficiently useful "back-of-the-envelope" ideas 

to be documented. 

2,1    Foroe Ratios 

Consider the functions m(t), n(t) satisfying 

dm 
3t = -3<R0 - vt)n(t) (v > 0) 

§| = -a(RQ - vt)m(t) , 

where the notations are the same as that employed in Part C 

of the report. Transforming variables so that m(R - vt) 

= m(t), n(R - vt) = n(t), we have 

H = v"10(r)n(r) 

§£ = v^aivMr) 

with initial values M,N at range r = R . Then we find that 

-1 a£ = v'^Cr) - v"1a(r)p^ , 



siu 

v = e if ß - at-M < 0 

v = V if tJ - cfÄ-Y > o , •€ 
where m,n are the values of m and n generated by the step 

function policy operating out to the present range. 

i 

whore p = •*  is the "force-ratio." This first-order differential   J 
» 

equation in p is termed the fundamental equation. 
r 

Now there is a solution to this equation for any initial 

point (r,p) and any v. We know that the solution for (r,p,,v) 

does not cross the solution for (r,P2>v) if p.. i  p«.  This 

leads to two conclusions: 
• 

(1) For fixed assault speed v at r and forward (lessen- 

ing r), increases in the initial value of v give 

increases throughout; 

(2) Among solutions with step function vfs, the highest 

one at one point is the highest at all prior points 

(if the solutions are limited to those existing on 

the whole range). 

There is a maximum solution for step function v's with 

0 < e £ v £ V <». This solution is equivalent to a particular 

step function v, which we will call the ratio-optimal (in range) 

policy. This policy is: 

. 

i 
f 

.. 

. 
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9.4.3 

The solution is generated in the following manner; 

Seep 1 

W 2 (a) If 6 - a(n)  > 0» solve the fundamental equation with 

m (1) initial point (r> S, V) and take rvx/ to be that point 
U ,^x   2 

on the solution where ß - af-=-i  = 0 . w 
(b) If 3 - a[—) < 0, solve the fundamental equation 

81 (1) with initial point (r, ^, E) and take rv ' to be that 

point on the solution where 0 - a (&)    = 0 . 

Step   2 

Solve the fundamental equation with initial point 

• 
where v* is e or V, appropriately 

Step  3 

Continue step-wise in this manner. 

It is worth noting that the arguments of this analysis 

do not carry over to either force-ratio maximization in the 

time domain or force-difference maximization.  In both these 

cases, the proposition on noncrossing solutions does not 

immediately hold, which invalidates the argument. 
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2,2    A   Linear Model   of Combat *, 
r 

Consider a military force consisting of an amount X. of 
j — 

force units of type j(j=1,...,J).  A pair of forces in com- 

bat may be considered as represented by a single vector X 

whose components are measures of force unit strength for various 

type units. (Units are not considered of identical type unless 

they have identical allegiances.) 

A differential equation 

DtX = Fs(t,X)X , 

where F is a linear transformation, is called a differential 

model of combat.  The parameter s is a scenario and environment 

index, and t is a time parameter. 

If F do«3 not depend on X, we have a linear differential      f 

eouation (for our fixed scenario s).  Under the usual regularity 

conditions, we know that the solutions to this differential 

equation are of the form 

X(t) = Z(t)X(0) , s      s   s 

where Z is a linear transformation.  Thus, if the combat is 

taken tc end at a fixed time, the final force vector is a 

linear function of the initial force vector, X(0).  The model 

jls clearly unrealistic if any components of the force vector 

Decome less than 0 during the combat. Accordingly, we will 

consider cases in which this does not occur. 

i 

I! 
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Under appropriate convergence conditions, an explicit power 

series solution for Z in terms of F is obtained as follows. 

Let 

z ft) = z<°>+ z(1)t • z(2)t2 • . 

and 

Then 

F8(t) . p(l> • F(2)t * F(3)t2 + B#-I 

nZ(n) 5 £ p(i)2(n-i) s     M    s  s 

The first few terms  of Z(n) are,  explicitly , 

(2)   . 

Z(D . F(D 
s s 

1 ,<*> • 1 F<X)2 

z<.3) ° I *'V + k *(r ^ • * F<" r<V • i r^ • s     T T<   s     *   s     +  f 

"See Appendix   F,  2. 
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4 1  p(D PC3) ,. 1  F(l)-(2)p(l) . 1 P(l)2r(2) 
12  s   8   12  s  s  s   24 s   s 

24  s 

It is worth noting that the noncommutation of F   and 

F i means that this function Z is not the same as the function s 

equation for Z in the real numbers. 

Term-by-term comparison for the first five terms gives 

Y(0) s z(0) 

y(l; . z(l) 

Y(2) s z(2) 

Y(3) = Z(3) • * (F(2) F(1) - F(1) F(2)) 
s    6    s    S      8    8 

See Appendix F, 2. 

ü 

Y = £ GVü 

with 

6 = / F . 

This function Y is the direct formal solution of the differential 

! 

• 
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J 
(*) 

-    £l + T7 <3) 'T - r(V r<V> 

• 4-  (F<2>  F<}>2 -  F<*>2 F(2>) 

. 

The loss vector, X(t) - X(0), is (Ze(t) - I)X(O), a linear 

function of the initial forces vector. 
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Appendix F, 2 

RECURSIVE RELATION TOR THE POWER-SERIES SOLUTION OF Z 

Robert Farrell 

Let 

D.X(t) = F (t)X(t) (1) 

ana 

X(t) = Z (t)X(O) • (2) 
5 

Then, differentiating (2), v,e have 

D.Xit) = [D.Z (t)]X(0), t        t s 

and substituting in (1), 

[D.Z(t)]X(0) = [F(t)Z (t)]X(0) t s s   s 

or, since this holds for general X(0), 

D.Z(t) = F(t)Z (t) , t s      s   s 

Dty(t) = f(t)y(t) , 

has the known solution 

y(t) = exp ( / f(t)dt) . 

i 
i 

a matrix differential equation.  If we expand F and Z in series, 

we obtain the recursion relation given in the text of Section       | 

2.2.  The analogous real differential equation, 

«» 

v 



 I  ~^—^—' 1» I^V^MK 

i 
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This le*ds to, on reversing the analogy, the funct 

Y(t) »J^/i! 

ion 

where G = Jt F, as mentioned in the text. 
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Chapter 3 

AMMUNITION REQUIREMENTS BASED ON DIFFERENTIAL 
MODELS OF COMB/T 

Robert Gruhl and W. P. Cherry 

This chapter presents initial analysis to obtain informa- 

tion about the ammunition requirements when the dynamics of 

combat are described the differential models documented in 

preceding parts of this report.  Ammunition requirements, 

as contrasted with expenditures, are the total quantities of 

ammunition which a force type would need to engage in any 

particular battle without suffering a stockout. This informa- 

tion provides some guidelines regarding the amount of ammuni- 

tion a force should be supplied with prior to an engagement. 

Ammunition expenditures  are defined as the number of rounds 

actually lost to the logistic system during an engagement. 

In general, this includes not only those rounds actually 

fired but those destroyed by enemy fire, or otherwise rendered 

useless. This information is useful for costing in planning 

studies and when analysis of sequential battles is considered. 

Principal interest in this chapter is the determination of     j 

ammunition requirements. Except where noted the analysis 

employs the following assumptions: 

(1) Ammunition available for each force group is dis- 

tributed equally among all the units of that group at 

the outset of the battle , 

u 
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(2) Transfer of ammunition between units during combat 

is impossible, i.e., there is no redistribution 

either within or among force groups. 

It is also assumed that the force is not resupplied during 

the engagement, although this can be added in a straight- 

forward manner in follow-on analyses.  Using assumption (1), 

it is sufficient to calculate the requirements for a sin- 

gle unit of a force group; by assumption (2), the overall 

requirements for a force group are based on the maximum require- 

ments for any single unit in that group. 

3.1    Homogeneous-foroa Model:     Constant Attrition Bates 

The differential model considered here has the form 

|| -  -om(t) (1) 

ft • -an(t) , (2) 

I 

where 

n(t) = number of surviving Red forces at time t after 
the engagement begins, 

m(t) = number of surviving Blue forces at time t after 
the engagement begins, 

a[$] • BlueCRed] weapon attrition rate (assumed constant). 

This model requires that all units begin and end fire simul- 

taneously» and that all units fire independently of each other 

and at the same rate. Thus, neglecting random fluctuations 

( 
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\ '-  Mcm (3> 

Qn - Nen • m 

To predict c in this simple case, one simply observes that 

«« sb.T (5) m   m 

(1) and (2) for the surviving number of foices and finding the 
2    2 time for a force to be annihilated.  If aM > 0N , Blue anni- 

hilates Red in 

i 
r 

for the moment, each unit consumes ammunition at the same rate 

and each survivor will have consumed the same amount of ammu- 

nition.  Let this quantity be denoted by e , where the sub- 

script m denotes that e is applicable to the Blue force.  Like-     j 

wise, the subscript n will refer to the Red forces.  Then, 

if 

M = initial number of Blue forcesa 

N s initial number of Red forces, and 

Q = total ammunition requirements for the force, j 

it is evident that 

i 

i 
i 
i 

e =b T (6) fcn   n » 

where: 

b s firing rate common to all units of a force, and 

T = duration of the engagement 

The battle duration T is determined, as in CC, 1.0], by solving 

:: 

I 



'-•"    '•' • '  

El ' 

0 
D 
0 
t 

625 

T -.  -i- tanh-1^ g) . (7) m  *^B      L    MJ 
2    2 

Similarly, if oM < 8N , Red annihilates Blue in 

n M L   NJ 
Based on the developments of Part B, the attrition rate may 

be considered as 

a * ro = o, i o,p  « (9) 

where 

E[T] = mean time to fire p rounds, 

cl,c2 = *c<luisition and firing time constants of the 

blue weapon system (see equation 11 LB, 2.0]), 

p = mean number of rounds required to destroy one 

enemy unit. n it 
Thus,at any time, the rate of fire of a single Blue unit is 

where dimensionally, 

b. = rounds/unit time, m 

.     Red units killed 
a " single Blue unit x unit time  ' 
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rounds fired 
•m ~ Red units killed ' 

Thus, 
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i 
b  =  rS  . <1D m  E[ 1 c2pm j 

Similarly, 

f 
b„ =  P   . (12) 

el + c2pn 

Assume that initial ammunition supplies are q and q 

rounds per Blue and Red unit, respectively. We consider the 

2    1 case aM > ON for which the outcome is annihilation of Red 

at t = T , provided there exists adequate ammunition on both 

sides. Thus, adequate supplies are 

Q    *  b T *m       mm 

and 

i 

i 

• Mtekfe ""'-1 [^«],13>    B 

0 
qn s    n m 

- ( ?*—\-L tanh"1 f/573 S"|. Cl») J 

I ;  -       - 
The time constants for Red weapons are c, and c?. 

i 
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Results of battle are the same for supplies greater than q 

and q .  Suppose, however, that lesser amounts q', q' are 

supplied. In this case battle ends because a force runs out 

of ammunition at T , where s 

T    = min *i 
Pm 

ci + c2Pm 

**     r (15) 
Pn 

c, • c0p 2^n 

It is of interest to consider relaxing assumption (2) 

and assume instead that there exists a central supply of 

ammunition from which each unit draws. The rate of fire of the 

Blue foroe  at time t is 

bM = aPmm(t) ' (16) 

In a small interval of time, dt, the total ammunition expen- 

diture is 

e^t) - apmn(t)dt , C17) 

and we obtain the total ammunition expenditure up to time t 

as 
t 

^(t)  s    /   apmin(x)dx  . (18) 
o 

Substituting (9) and m(t) from equation 12 [C, 1.0], we obtain 

EM(t) s Npm - p (N cosh /ag t)- fiJl M sinh /aS t).  (19) n m   m 
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Note that E (t) is simply the product of the number of Red units 

destroyed at time t and the mean number of rounds required to 

destroy a single Red unit.  Thus for the Red force ammunition 

expenditure at time t we obtain 

EN(t) = Mpn - pn(M cosh Soft  t -/57a N sinh /a$ t) .   (-20) 

2     2 
Again assuming aM > 0N , we obtain for "adequate" ammunition 

supplies QÄ = Np and QA = Mp for the Blue and Red forces , 

respectively. Given supplies of <L £ Q* and Qw £ QM> tne 

duration of battle is now T^ = min (T^, T^} , where T^ is 

obtained from 

QM = Npm - p IN cosh (/ÖT Tjjj) - /a7$ M sinh (/öT fp\ . (21) 

Substituting for the hyperbolic functions » 

i/aJl K - N)(e   M)Z - 21-^ - Nje   M - (/37J M + N) = 0 ,     • 

(22) 

which yields 

TM " -ZZ  * M      /ab 

2(QM/pm - N) • Ju(QM/pm -  N)Z +  H(a/B M2 -  N2) 

2(/ä7? M -  N) 

(23) 

Since in the cases of interest QM £ p N , we need only consider 

the positive square root in (23). 

Identical reasoning yields 

i 
i 
i 
! 

f 
I 

I 
I 
I 
I 

.; 

ü 
i 
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U  • 4s *n 

.: 

- 

. i 

i 

2(QN/pn - M) +^*<QN/pn - M)
2 • U (! N2 - M2) 

(1N-M) 

(24) 

Under the assumption that aM >  3N the following battle outcomes 

result, dependent on initial ammunition supply: 

C"» u   Q„ L Q«  QN i QN 

Blue annihilates Red at 

TM = -Ar tanh M  ,£5 

Case  2: QM>QJ  QN<QN 

i«r* i] • 

Red breaks off or surrenders to Blue because of ammunition 

stockout at T' < T . 
N   n 

*       «   «s  «* I ] Ca.. 3:    QM < <£   QN > Qj 

Blue breaks off or surrenders to Red due to anounition 

stockout at TA <  T . n   m 

Case 4:    QM < Q*   QN < Q* 

j 
The battle ends at T* >  where T^ - min CT^T^}, the time 

of first ammunition stockout. 

The above formulation of supply from a central point is 

analogous to the somewhat unrealistic situation in which the 

ammunition of a destroyed unit is redistributed amongst the 
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surviving units, thus utilizing all ammunition.  Since the 

derivations of EM(t) and EN(t) are based on the differential        • 

equations describing combat losses, the expenditure expressions 

hold for the results of the previous section where no redistri-     I 

bution was possible and each unit had an identical supply, q lm 

and q , respectively. 

Thus for the Blue force at time t 

(a) m(t) = M cosh i/aß t - /57a N sinh ^aJT t     (25) 

(b) £M(t) = Npm- p (N cosh /ÖB t - /Ö75 M sinh /ag" t) M      *m  *m 

(26) 

(c) number of rounds available to survivors 

nA(t) '-   (<V " bmt)n(t) 

(d) number of rounds lost due to destroyed Blue units 

"L(t) '- *m*  " Vt} " nA(t) 

P„t 

(27) 

) 

= qm(M - »(t)> - Pm(N - r.(t» •   | gg- m(t). 

(28) 

Similar results hold for the Red forces» 

i 
i 

• • 
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. 

3,2    Homogeneous-Force Model:    Range-Dependent Attrition Rates 

We consider next homogeneous-force battles with attrition 

rates that are functions of the range, r.  Hence, 

§g = -a(r)m (29) 

~ = -3(r)n . (30) 
« 

Letting P(r) represent the number of rounds required to de- 

stroy an enemy unit at range r, the firing rates may be es- 

timated as 

b (r) = <x(r)p (r) = Blue firing rate at range r   (31) mm 

bn(r) = 3(r)p (r) = Red firing rate at range r.   (32) 

Since the calculation of requirements depends upon how the 

engagement is conducted, we consider a constant speed attack 

engagement.  In this case, one force attacks the stationary 

opposing force at a constant velocity, v.  Let r represent the 

distance between the forces at the end of the battle.  Then the 

number of rounds fired while at range r for a short interval 

dt is (for Blue) 

b(r)dr 
b (r)dt = -*—  . (33) m v 
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Hence, the requirement is found from 

/b (rjar  ,  *r 
(34) 

where Ra (Ro) is the maximum range at which the Blue (Red) 

weapons can destroy targets.  Analogously, the Red force require- 

ment is 

n   V /o   n 
(r)dr 

As an example, assume that 

(35) 

iKm(Ra - r) 

b
m<
r) = m 

0 < r £ Ra 

r > R 

(36) 

bn(r) = 

K (R0 - r)    0 < r < Rfl n p —  —  p 

r > RB, 

(37) 

i.fc., the firing rate is linear witn respect to range and has 

slope K  (K ) for the Blue (Red) forces (K,K  < 0) .  Hence, r      m  n m n 

em ' 7 / **<"» - r) dr 

(38) 
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r 

Similarly, for the Red forces, one has 

K r     -2  R2 

S-^^-f-T*]- (39> 

3.3 Heterogeneous-force Model:     Constant-Attrition Rates 

We briefly consider the case of heterogeneous-force 

bettles where the attrition rat-.s of eacn of the weapon systems 

is constant. This situation is examined in detail in Part D 

of the report.  The describing equations are given as 

dm.    ^ 

| ar1 r - & hjißjinj   *•*.—-.•! <*0) 

dn. »n 
ar "•- ft eij«ij»i   i •!.....*'. («« 

. I where: 

m.  = number of surviving Blue forces of group i at time 
t, 

n.  • : umber of surviving Red forces of group j at time 
3   t, 

fj «•.: • constant rate at which a single Blue unit of group 
'ID i can destroy Red group j units, 

$.. = constant rate at which a single Red unit of group 
3   j can destroy Blue group i units, 
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e.. = fraction of the Blue group i forces firing on the 
J      Red group j forces. 

The reader is referred to CD, 1.0] for the solution to these 

coupled differential equations. 

We define 

t.. = total length of time for which Blue group i fires 
13 on Red group j, 

x\ . = total length of time for which Red group j fires 
-1 on Blue group i, 

which are determined from the optimal assignment strategies 

discussed in [D, 2.0]. In general, 

J 

I 

where 

* 
t. = time between the annihilation of Blue force group 

i, if any, and the end of the engagement, 

t. = time between the annihilation of Red force group 
3  j9 if any, and the end of the engagement, 

T = duration of the engagement. 

[ 

h.. = fraction of the Red group j forces firing on the       | 
3   Blue group i forces, 

i 
i 
i 

i 
i 

2 *ij • t* = T     i = 1,...,I (42)      I 

i 
I 

S t. . • t*.   = T     j = 1 J , (43)      1 
i=l 31   3 1 

i 

D 

KM* 
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Ml 
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(1 
LI 

n 

D 

If 

Pij 

ji 

number of rounds required for one weapon in Blue 
group i to destroy one target in Red group j, and 

number of rounds required for one weapon in Red group 
j to destroy one target in Blue group i, 

and it is assumed that optimal strategies are always followed 

by both sides, then the ammunition requirements fcr Blue force 

group i are expressed by 

i = J5. *«*«*«   i • !»••••! • («Ml) 

Similarly, for Red force group j, the requirements will be 

rj= £ *jiPjiTJi   j = x , • • . , u  • (45) 

If there are M. of the Blue group i units initially, and N. 

of the Red group j units, then the total requirements for all 

force groups are 

Qi s Miei   * s 1»-">1 

for the Blue forces, and 

Qj = N^Ij   j = 1,...,J 

(46) 

(47) 

for the Red forces. 
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